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Overview
Embodied AI has been recently gaining attention as it aims to foster the development of au-
tonomous and intelligent robots combining decision making with computer vision.
In this work, we aim to enrich the traditional embodied exploration setting with a new task in-
volving a third modality: describing the most relevant features of the environment [1] via natural
language.

The proposed task presents three main challenges:
• How to maximize the relevance of seen objects?
• How to describe what the agent sees in its trajectory?
• How can the agent know when to talk? What is the best speaker policy?

We call this new setting for embodied AI Explore and Explain.
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eX 2 Architecture
We call our model eX2, from the name of the task, and it
consists of three main components: a navigation module,
a captioner and a speaker policy:

• The navigation module is based on curiosity-driven
exploration [2] and is in charge of exploring the envi-
ronment.

• The captioning module is built on the Transformer
model [3] and produces textual sentences describing
the agent point of view.

• The speaker policy connects the previous modules
and activates the captioner based on the information
collected during the navigation.
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Navigation Reward
The navigation policy is trained with PPO [4] to maximize the sum of a two-
component reward. Those components are the surprisal of the curiosity-driven
exploration and a penalty pt for repeated actions.
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Qualitative results of the navigation module compared to a random explorer and to eX2 without the
penalty component in the reward.

Navigation Module Surprisal

Random Exploration 0.333
eX2 w/o Penalty for repeated actions (RGB only) 0.193
eX2 w/o Penalty for repeated actions (Depth only) 0.361
eX2 w/o Penalty for repeated actions (RGB + Depth) 0.439

eX2 0.697

Surprisal scores for different navigation policies. Higher values indicate better exploration.
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Sentences generated on images extracted from eX2 exploration.

eXplore and eXplain (2 layers)

Speaker Policy Cov>1% Cov>3% Cov>5% Cov>10% Div

Object-driven (O ≥ 5) 0.373 0.497 0.577 0.713 0.340
Depth-driven (D > 0.75) 0.425 0.525 0.595 0.715 0.325
Curiosity-driven (S > 1.0) 0.448 0.545 0.610 0.723 0.349

Coverage (Cov): assesses how the predicted caption covers all the ground-truth objects.

Diversity (Div): diversity in terms of described objects of two consecutively generated captions.

Speaker Policy
• Object-driven: the captioner is triggered if the number of objects (O) in the

scene is above a certain threshold.
• Depth-driven: the mean depth value of the observation (D) is used for the acti-

vation.
• Curiosity-driven: the captioner is triggered using the surprisal reward (S).


