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Chapter 1
Introduction

After the Deep Learning Revolution occurred in the last decade, our world has
become increasingly interactive, digitalized, and intelligent. Nowadays, some
complex models can understand what we say and answer accordingly. Other
architectures can recognize President Obama or a movie poster from Harry Pot-
ter among thousands of different images. However, the actual embodiment of
artificial intelligence is still far from being achieved. The field of Robotics is
making remarkable progress, with the creation of robots able to run, dance, and
perform somersaults and impressive parkour moves. Nevertheless, the presence of
intelligent collaborative agents in our homes is an ambitious yet distant goal.

Why is that so? Different from humans, machines can elaborate a vast amount
of data. As a result, they can compute nearly perfect solutions on precise and well-
defined tasks. But while the data processing abilities of machines are unmatched
by humans, artificial intelligence lacks interpretation, imagination, and common
sense. For instance, finding a spoon in a kitchen is a non-trivial task for a robot.
As a first problem, the agent might not know what spoons or kitchens are. Second,
spoons are generally inside drawers. While humans make this semantic connection
automatically thanks to their experience and can perform this action with ease,
opening a drawer is a complex interaction with the environment that the agent
might not even know. Together with these challenges, there are many other
obstacles that a robotic assistant would face. To accomplish the embodiment
of artificial intelligence inside robots, we must equip the machines with the
instruments to perceive, reason, and act in the world around them, our everyday
world.
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1.1 Motivation
Recent advances in Deep Learning have allowed the creation of complex archi-
tectures that can deal with many different tasks. For instance, Computer Vision
models can identify the content of an image and detect the individual elements
with unprecedented accuracy. At the same time, progress in the Natural Lan-
guage Processing field yields impressive results. We can all experience it in
our everyday life: we can ask the vocal assistant on our mobile phone to find
a picture of an Indri on the internet. In this simple way, we can all understand
how much the processing abilities of our devices have improved in the last few
years. While the results achieved by the vision-and-language communities are
impressive, there is still a key component missing in these architectures: autonomy.
Indeed, they cannot move or decide what to look at, and as such, they cannot
experience the world as we all know it. As we try to enable these behaviors in the
next generation of artificial intelligence models, we face the great challenges of
embodiment [26, 62, 173, 174] and Embodied Artificial Intelligence (Embodied
AI) [54]. We define:

Definition 1.1.1 (Embodied AI). Research field that strives for the creation of
embodied agents which learn, through interaction and exploration, to solve chal-
lenging tasks within their environments.

When we include the processing abilities of modern deep learning architectures
for vision and language in a robot that perceives and acts in an environment, we
face two different challenges. The first challenge is related to the concept of
time [53]. We all know that every action has a consequence and produces results
in the future. For instance, opening a drawer will allow us to pick up items from
inside it but could hinder the passage later. We can account for the effects of our
actions in the long term because we have been dealing with them since the day we
were born. However, long-term dependencies create many troubles for modern
intelligent systems [20]. We define:

Definition 1.1.2 (Long-term Dependencies). Cause-effect relationships between
two or more actions taken in different (generally distant) moments in time.

The second challenge arises from the presence of information coming from
different domains [120]. Such domains are vision, language, and action (see
Fig. 1.1). The vision domain includes what the agent sees with its sensory suite.
The language domain comprises textual information, descriptions, and instructions.
The language domain is usually where human-robot communication happens in the
form of orders and feedbacks. Finally, the action domain is peculiar to robots and
contains position, velocity, and other information about the interactions between
the agent and the environment. While there are great results on tasks involving
single modalities and recently also on vision-and-language applications, there is
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Figure 1.1: Embodied AI comprises three main different modalities. The tasks
tackled in this thesis lie at the intersection of vision, action, and language.

still much ongoing research trying to solve challenges related to the fusion of all
these three modalities [153, 154]. By using the robot perspective, we define:

Definition 1.1.3 (Multimodality). The capacity for an agent to perform a task
in the environment by combining information coming from at least two different
sensory channels.

In this thesis, we focus on these two main challenges. Dealing with long-term
dependencies and multimodality is crucial for embodied agents. As such, we
provide numerous insights and experimental evidence as to what techniques are
more effective when dealing with different tasks in the new field of Embodied AI.

1.2 Problem Statement
Human beings and machines have very different ways to perform simple tasks in
their environment. Similarly, their respective efficacy is tremendously distant, with
human performance being much higher than the one achieved by robotic agents.
For the most part, this difference in performance is due to the different ways in
which humans and machines deal with long-term dependencies and multimodality.
It is no doubt that if we are to achieve nearly-human performance in Embodied
AI, we must address these two aspects. While reproducing either the ability or
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the complex structure of the human brain is a dream achievable purely by science
fiction, we can try to minimize the performance gap for simple tasks such as
exploration and navigation in an environment between a human and their robotic
counterpart. Hence, the fundamental question of this thesis is:

How to bridge the performance gap for simple Embodied AI tasks?

Our efforts to minimize the discrepancy between human and artificial per-
formance begin with an analysis of the role of time. Traditional methods for
vision-and-language have experienced the difficulties of dealing with time series.
For instance, to generate a caption for an image or video, one must be aware of
the concept of time. In other words, the reasoning models need to know what is
before and what is after. The same applies to Embodied AI, but on a completely
different scale. The agent must not only reason about time but also perceive and
act inside time. During the chain of events represented by a navigation episode,
the observations made by the agent greatly depend on its previous decisions and
actions. The first question arising when dealing with simple Embodied AI tasks is:

How to deal with time series with long-term dependencies?

Immediately after, the newborn agent needs a simple yet effective way to
perceive the environment and act inside it. The action of exploring an unknown
area is a simple form of interaction between the agent and its environment. For this
reason, in this thesis, we consider the task of embodied exploration as a crucial
testbed for our agents. The second question in our journey in Embodied AI is:

How to merge visual perception and actions to enable exploration?

While exploration is conceptually simple, it can enable a series of more
complex downstream tasks. For instance, given an appropriate architecture for the
agent, it is possible to employ the knowledge gathered in exploration to perform
goal-driven navigation. In the same way, it is possible to influence the learning
process with task-specific rewards to teach the agent different simple tasks. The
third question is:

How to combine learning methods and architectural modules to
enable new tasks?

Finally, we want our agent to understand our instructions. Therefore, we need
to include the language modality in the loop. In our specific case, we want the
agent to interpret textual instructions. Examples of such instructions may be “turn
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Figure 1.2: Outline of the work addressed in this thesis.

right, get out of the kitchen, and move towards the red armchair. Stop there and
wait”. To execute this kind of order, it is evident that the robot needs to ground
linguistic descriptions into its visual observations. In our journey in Embodied AI,
the fourth and last question is:

How to include natural language in the agent reasoning system to
enable language-driven visual navigation?

Answering the four questions will help us reduce the performance gap between
human and robotic performance on these simple tasks. And even after, progress
will be possible mainly by finding new, better solutions and answers to these four
questions.

The field of Embodied AI has seen a proliferation of new tasks and methods
in recent years. Similarly, it has witnessed an increase in the availability and
diversity of simulating platforms. Unfortunately, this diversity hinders reprodu-
cibility and substantial improvements. The introduction of the Habitat simulating
platform [145] strives to counter this trend and provide a common research ground
for Embodied AI. We joined this initiative by evaluating a substantial part of our
work on the Habitat platform.

1.3 Organization
This thesis presents a step-by-step approach to the new and complex challenges of
Embodied AI. Fig. 1.2 depicts the overall structure of this process.
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In Chapter 2, we discuss Recurrent Neural Networks (RNNs). RNNs are
the most common approach when dealing with time series. In particular, Long
Short-Term Memory (LSTM) is the standard de-facto for many tasks involving
sequential inputs and long-term dependencies. As such, they represent an enabling
technology for Embodied AI. We introduce a heuristic enhancement of LSTM that
brings better results, increased training stability, and reduced convergence time on
a set of tasks.

Chapter 3 introduces the heart of the thesis. We place the embodied agent in a
simulated photorealistic unknown environment and teach the robot to explore it.
To that end, we propose an approach relying on artificial curiosity, where the agent
tries to maximize its surprisal during the exploration episode. While exploring,
the agent must produce natural language descriptions of what it sees. We call
this setting Explore and Explain. In Chapter 4, we devise a new task involving
embodied exploration where the agent already knows the environment layout,
but something has changed since its last episode. The goal is to recognize and
identify as many differences as possible in a given time window. We name this
new task Spot the Difference. Chapter 5 introduces a modular architecture for
embodied exploration trained with a purely intrinsic reward. Our strategy promotes
actions likely to produce a high impact on the environment. We then show that
exploration is an essential ability of embodied agents and that it can enable a
series of downstream tasks such as coordinate-driven navigation in unknown
environments.

Then, in Chapters 6 and 7, we tackle the recent task of Vision-and-Language
Navigation (VLN). In VLN, the agent needs to follow a language-specified in-
struction to reach a target location in a new environment. We design two different
methods to fuse lingual and visual information. In Chapter 6, we present an
approach based on dynamic convolutional filters. This method exploits the instruc-
tion and internal state of the policy LSTM to fuse information coming from the
visual and textual modality via dynamic convolution. In Chapters 7, we devise a
fully-attentive architecture for VLN. Taking inspiration from recent advances in
Natural Language Processing and Vision-and-Language, we design a Transformer-
like architecture for VLN. Self-attention can deal with long-term dependencies
effectively. As such, it is a convenient choice for our case study. At the same time,
multimodality is achieved by design thanks to cross-attention layers. We call the
resulting architecture Perceive, Transform, and Act (PTA). In this last part of the
thesis on Vision-and-Language Navigation, we show that it is possible to include
natural language instructions from a human user in the agent reasoning motor.
Hence, we enable a series of future research directions and applications.

As an additional contribution, we discuss the deployment of agents trained in
simulation in the real world. We present this discussion in Chapter 8. While most
of our experiments exploit simulation, we show that it is possible to deploy the
resulting models on a Low-Cost Robot (LoCoBot) [106] with little effort. The
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work presented in Chapter 8 is orthogonal to the material outlined in the previous
Chapters and represents a further research direction. This direction will need more
and more consideration as Embodied AI progresses towards more intelligent and
autonomous agents. Chapter 9 depicts these possible future directions and presents
the conclusion of this thesis.





Chapter 2
Working Memory Connections for
LSTM

Recurrent Neural Networks with Long Short-Term Memory (LSTM) make use of
gating mechanisms to mitigate exploding and vanishing gradients when learning
long-term dependencies. For this reason, LSTMs and other gated RNNs are widely
adopted, being the standard de facto for many sequence modeling tasks. Although
the memory cell inside the LSTM contains essential information, it is not allowed
to influence the gating mechanism directly. In this Chapter, we improve the
gate potential by including information coming from the internal cell state. The
proposed modification, named Working Memory Connection, consists in adding
a learnable nonlinear projection of the cell content into the network gates. This
modification can fit into the classical LSTM gates without any assumption on the
underlying task, being particularly effective when dealing with longer sequences.
Previous research effort in this direction, which goes back to the early 2000s,
could not bring a consistent improvement over vanilla LSTM. As part of our
work, we identify a key issue tied to previous connections that heavily limits their
effectiveness, hence preventing a successful integration of the knowledge coming
from the internal cell state. We show through extensive experimental evaluation
that Working Memory Connections constantly improve the performance of LSTMs
on a variety of tasks. Numerical results suggest that the cell state contains useful
information that is worth including in the gate structure.

This Chapter is related to publication [8], as reported in the List of Publications.

9
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2.1 Introduction
Recurrent Neural Networks (RNNs) [53, 142] are a family of architectures that
process sequential data by means of internal hidden states. The set of parameters
of the network is shared across time steps, allowing the RNN to process inputs
of variable length. As RNNs suffer from the so-called exploding and vanish-
ing gradient problem (EVGP) [19, 77], which hinders the learning of long-term
dependencies [20, 128], previous works have proposed to enrich the recurrent
cell with gating mechanisms [78, 84]. For instance, Long Short-Term Memory
networks (LSTMs) [78] use gates to control the information flow towards and
from the memory cell and to regulate the forgetting process [61]. LSTMs are
adopted in a wide number of tasks, such as neural machine translation [13, 158],
speech recognition [68], and also vision-and-language applications like image and
video captioning [15, 166, 177].

In this Chapter, we propose a novel cell-to-gate connection that modifies the
classic LSTM block. Our formulation is general and improves LSTM overall
performance and training stability without any particular assumption on the under-
lying task. In the vanilla LSTM formulation, the gates are controlled by the current
input of the block and its previous output, which acts as the hidden state for the
network. The long-term memory cell, instead, is employed to store information
during the forward pass and provides a safe path for back-propagating the error
signal. We argue that the content stored in the memory cell could be useful to
regulate the gating mechanisms, too. The key element of our design is a connection
between the memory cell and the gates with a protection mechanism that prevents
the cell state from being exposed directly. We draw inspiration from the gated
read operation employed to reveal the cell content at the block output, and enrich
it with a learnable projection. In this way, the LSTM block can use the knowledge
in the cell (acting as a long-term memory) to control the evolution of the whole
network in the short-term.

A similar concept in cognitive psychology and neuroscience is the so-called
working memory [55], a type of memory employed, for instance, to retain the
partial results while solving an arithmetic problem without paper, or to combine
the premises in a lengthy rhetorical argument [75]. Although definitions are not
unanimous, working memory is said to be a cognitive system acting as a third type
of memory between long-term and short-term memory. Our connections share
this characteristic with working memory. For this reason, we call them Working
Memory Connections (WMCs).

A first attempt to fuse the information of the cell in the gates was made
with the design of peepholes [60]: direct multiplicative connections between
the memory cell and the gates. This approach has not been largely adopted in
literature, as recent studies report mixed results [69] and discourage their use.
Since our idea recalls the rationale of peephole connections, we provide a large
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comparison with this previous work. By doing so, we point out the major issues
in the peephole formulation that hinder effective learning and attest that WMCs
do not suffer from the same problems. In our experiments, we show that an
LSTM equipped with Working Memory Connections achieves better results than
comparable architectures, thus reflecting the theoretical advantages of their design.
In particular, WMCs surpass vanilla LSTM and peephole LSTM in terms of final
performances, stability during training, and convergence time. All these aspects
testify the advantage in letting the cell state participate in the gating dynamics. In
order to support our conclusions, we conduct a thorough experimental analysis
covering a wide area of current research topics.

To sum up, our contribution is mainly three-fold. First, we present a modi-
fication of LSTM in which traditional gates are enriched with Working Memory
Connections, linking the memory cell with the gates through a protection mech-
anism. Then, we demonstrate that exposing the LSTM internal state directly and
without a proper protection yields unstable training dynamics that compromise the
final performance. Finally, we show the effectiveness of the proposed solution in
a variety of tasks, ranging from toy problems with very long-term dependencies
(adding problem, copy task, and sequential MNIST) to language modeling and
image captioning.

2.2 Related Work
Long Short-Term Memory networks [78] aim to mitigate the exploding and van-
ishing gradient problem [20, 77] with the use of gating mechanisms. Since its
introduction, LSTM has gained a lot of attention for its flexibility and efficacy in
many different tasks. To simplify the LSTM structure, Liu et al. [105] propose to
exploit the content of the long-term memory cell in a recurrent block with only two
gates. However, this model neglects the importance of the LSTM output. While
this might be useful for simple tasks, it is unlikely to generalize to more complex
settings. Arpit et al. [12] propose to modify the path of the gradients in order to
stabilize training with a stochastic algorithm specific to LSTM optimization. This
direction of work is not in contrast with our goal, and could possibly be integrated
with our proposal since our connection does not require a specific setup to be
optimized. Among the LSTM variants, the Gated Recurrent Unit (GRU) [37, 38]
is the most popular and common architecture [40], and features a coupling mech-
anism between input and forget gates [69]. A recent line of research aims to tailor
the LSTM structure for specific tasks. For instance, Baraldi et al. [15] propose
a hierarchical model for video captioning, while other works incorporate convo-
lutional models into the LSTM structure [100, 176]. While these works propose
a modification of the LSTM towards a specific goal, we propose a general and
powerful idea that adapts to a large set of different tasks.
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Recently, models based on self-attention, such as Transformer [164] and its
variants, are achieving state-of-art performances on many different tasks, and
also for sequence modeling. For instance, language representations based on
BERT [51] can be finetuned with an additional output layer to obtain state-of-
art results on many language-based tasks. However, RNNs require much fewer
parameters and operations to run than Transformer-based architectures and are
still widely adopted. Moreover, LSTMs still have a large market in embedded
systems and edge devices for their low computational and memory requirements.

2.3 Proposed Method

In this Section, we present a complete overview of Working Memory Connections.
First, we recall the LSTM equations. Second, we explain the modifications intro-
duced in our design. Finally, we motivate the choices behind WMCs w.r.t. other
approaches. Specifically, we identify key problems in previous cell-to-gate con-
nections that hinder the learning process, and we show that the proposed solution
does not suffer from these weaknesses.

2.3.1 LSTM

The core idea behind Long Short-Term Memory networks is to create a constant
error path between subsequent time steps. Being xt the input vector at time t we
can write the rollout equations for a vanilla LSTM as:

gt = tanh(Wgxxt + Wghht−1 + bg) (2.1)
it = σ(Wixxt + Wihht−1 + bi) (2.2)
ft = σ(Wfxxt + Wfhht−1 + bf ) (2.3)
ct = ft � ct−1 + it � gt (2.4)
ot = σ(Woxxt + Wohht−1 + bo) (2.5)
ht = ot � tanh(ct). (2.6)

Here, g is the block input, i, f , and o are respectively the input, forget, and
output gates, c represents the memory cell value, and h is the block output. In
this notation, σ is the sigmoid function and � denotes element-wise Hadamard
product. In its first formulation [78], LSTM did not include the multiplicative
forget gate. However, being able to forget about past inputs [61] allows LSTM
to tackle longer sequences while not hindering the back-propagation of the error
signal.
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Vanilla LSTM Gate LSTM Gate with
Peephole Connection

exposed

LSTM Gate with
Working Memory 
Connection

protected

Figure 2.1: Comparison between a vanilla LSTM gate, a peephole connection, and
a Working Memory Connection.

2.3.2 Working Memory Connections

In the following, we introduce Working Memory Connections, which enable
the memory cell to influence the value of the gates through a set of recurrent
weights. Given a proper design for the connection, we argue that there is a
practical advantage in letting the cell state influence the gating mechanisms in
the LSTM block directly. In fact, the cell state ct provides unique information
about the previous time steps that are not present in ht. For instance, ht may be
close to zero as a consequence of the output gate saturating towards zero (see
Eq. 2.6), while ct may be growing and changing as a result of a sequence of input
vectors. In that case, since the cell state cannot control the output gate, the LSTM
block is forced to learn which particular value in the input vector is the marker that
signals to open the output gate. Instead, with an appropriate connection strategy,
the LSTM block could learn a mapping between the cell internal state and the gate
values.

Our solution employs a set of recurrent weights W?c, ? ∈ {i, f ,o} and a
nonlinear activation function to model a connection between memory cell and
gates. The application of a non-linearity on the memory cell is coherent with the
present LSTM structure: as it can be noticed from Eq. 2.6, a nonlinear activation
function is applied to ct before the Hadamard product with ot

1. In light of the
above-mentioned intuitions, we modify Eq. 2.2, 2.3, and 2.5 by exposing the cell

1Previous works [69] have also shown that removing this non-linearity leads to a significant loss in
terms of performance.



14 CHAPTER 2. WORKING MEMORY CONNECTIONS FOR LSTM

state ct at time t through a protection mechanism as follows:

it = σ(Wixxt + Wihht−1 + tanh(Wicct−1) + bi) (2.7)
ft = σ(Wfxxt + Wfhht−1 + tanh(Wfcct−1) + bf ) (2.8)
ot = σ(Woxxt + Wohht−1 + tanh(Wocct) + bo), (2.9)

where W?cct denotes a general linear transformation.
At a first glance, Working Memory Connections may seem redundant in the

gate structure. In fact, ht−1 depends from the value of ct−1 (Eq. 2.6). This
impression is misleading, as the proposed connections introduce two main aspects
of novelty. First, the non-linear activation function operates on three different
projections of the cell state, one for each gate type. Second, Eq. 2.9 shows that the
connection on the output gate depends on ct, rather than on ct−1, hence allowing
for a more responsive control of the output dynamics of the entire LSTM block.

2.3.3 Advantages of Working Memory Connections

To formally motivate the improvement given by Working Memory Connections,
we start by considering the local gradients of the gates in which the cell interaction
is added. We limit our formal analysis to the input gate it, but our reasoning can be
generalized to ft and ot. If we denote by īt the argument of the sigmoid activation
function (Eq. 2.7) at time t:

īt = Wixxt + Wihht−1 + tanh(Wicct−1) + bi, (2.10)

then the local gradient of the input gate it is expressed by:

∂it

∂ īt
=

∂

∂ īt
σ
(
īt
)

= diag
[
σ
(
īt
)
�
(
1− σ

(
īt
))]

, (2.11)

where 1 denotes a vector of ones, and diag[x] indicates a diagonal N× N matrix
whose diagonal contains the N elements of vector x.

From here, we can easily derive the local gradients on the recurrent weights
Wix, Wih, and Wic at time t:

∂it
∂Wix

=
∂it

∂ īt
⊗ xt, (2.12)

∂it
∂Wih

=
∂it

∂ īt
⊗ ht−1, (2.13)

∂it
∂Wic

= δ̂it ⊗ ct−1, (2.14)
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where ⊗ denotes the outer product of two vectors, and:

δ̂it =
∂it

∂ īt
�
(
1− tanh2( Wicct−1)

)
. (2.15)

Now, let’s consider what happens as t grows: we observe that xt and ht are
bounded to a limited interval. In particular, xt is a sample of the input data, and
ht is bounded in the interval [−1, 1] by construction. Instead, the cell ct can
grow linearly with the number of recursive steps, making its domain extremely
task-dependent. This is a well-known problem, which motivated the introduction
of the forget gate in the original LSTM structure [61]. Despite this, the range
of possible values of ct cannot be restricted to a fixed domain. The hyperbolic
tangent non-linearity helps to avoid an excessive influence of the unbounded cell
state in the gate mechanics, hence preventing unwanted saturation. As it can be
seen in Eq. 2.7, 2.8, and 2.9, the term related to the cell state is bounded in the
interval [−1, 1]. Additionally, it helps screen the connection weights W?c from
unstable updates.

Even if ct grew linearly with the number of time steps, its influence on the
sigmoid argument would be mitigated, and it could not take the sigmoid function
into its saturated regime against the other two terms driven by x and h respectively.
On the other hand, the growth of the cell state would push the hyperbolic tangent
towards its own saturated regime. This behavior helps protect the weight matrix
employed in the connection from unstable updates.
Peephole Connections and their Limitations. We now turn our attention to a
related connection, namely the peephole connection [60], which is no longer
common in the LSTM formulation. Peephole connections were introduced by
Gers and Schmidhuber in [60], and enrich the LSTM equations with recurrent
weights W?c, ? ∈ {i, f ,o}:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (2.16)
ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf ) (2.17)
ot = σ(Woxxt + Wohht−1 + Wocct + bo), (2.18)

with W?c generally constrained to be diagonal [67, 69]. While this formulation
allows for a more precise control of the gates, there are two issues that limit its
effectiveness. In this case, the local gradient at time t is expressed by:

∂it

∂ īt
=

∂

∂ īt
σ
(
īt
)

= diag
[
σ
(
īt
)
�
(
1− σ

(
īt
))]

, (2.19)

with īt being the argument of the sigmoid function in Eq 2.16:

īt = Wixxt + Wihht−1 + Wicct−1 + bi. (2.20)
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Figure 2.2: The cell state ct may grow linearly with the number of time steps.
Peephole connections directly expose ct, creating a key issue. Data for this plot is
taken from the first training iterations of the sequential MNIST (see § 2.4.2).

In light of this difference, Eq. 2.14 and 2.15 become:

∂it
∂Wic

=
∂it

∂ īt
⊗ ct−1. (2.21)

We observe that, both in Eq. 2.7 and in Eq 2.16, the magnitude of the product
Wicct−1 can in principle grow unbounded. The activation function introduced in
WMCs squashes this term into a closed bounded interval. In peephole connections,
hovewer, this term is added inside the gate without an adequate protection (see
Fig. 2.1). The result is that, in the peephole formulation, the sigmoid function
applied immediately after could be pushed towards its saturating regime independ-
ently from the value of xt and ht. In theory, the LSTM block can recover from this
situation by setting all the weights in the peephole connection to 0, but in practice
this might not happen if the sigmoid gate is saturated most of the time. Even if
the two other summands can compensate for the growth of W?cc, hence letting
gradients flow through the gate, there is still a key issue that hinders learning. In
fact, as shown in Eq. 2.21, the gradients on the recurrent peephole weights grow
linearly with c, making updates unstable.

To exemplify this behavior, we report the Euclidean norm of ct during the
early training stages in Fig. 2.2. After a small number of time steps, the content of
the cell floods the gates of the peephole LSTM. A possible consequence would be
that both the input and the forget gates would saturate towards 1. In our example,
this aspect leads to an additional and uncontrolled growth of the magnitude of ct.
As it can be seen, Working Memory Connections exhibit a much more regular
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Figure 2.3: Comparison among traditional LSTM, the proposed LSTM with work-
ing memory connections, and peephole LSTM. We investigate three different tasks:
the adding problem (top), the copying task (center), and the sequential/permuted
MNIST (bottom). In all the plots, shading indicates the standard error of the mean.

behavior than peepholes and can prevent the uncontrolled growth of the memory
cell.

2.4 Experiments and Results
The effectiveness of Working Memory Connections and their general benefits
can be appreciated in many different tasks. The proposed experiments cover a
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wide area of applications: two different toy problems, digit recognition, language
modeling, and image captioning. While the analysis on simple tasks helps to clarify
the inherent advantages of the proposed approach, results on more challenging real-
world applications motivate a wider adoption of our novel connections, especially
for long sequences. We compare our model (LSTM-WC) to a traditional LSTM
and to an LSTM with peephole connections (LSTM-PH).

2.4.1 Adding Problem and Copying Tasks
In the adding problem [78], the input to the network consists of a series of T pairs
(nt, ft), with 0 ≤ t < T . The first element nt is a real-valued number between 0
and 1, and ft is a corresponding marker. In the entire sequence, only two markers
fi and fj are set to 1, while the others are set to 0. The goal is to predict the sum of
the corresponding real-valued items ni +nj , for which f = 1. In our experiments,
we test with T = 200 and T = 400, and we measure the performance using mean
squared error. For this experiment, the networks have hidden size N = 128 and
train for 200 epochs. We optimize the parameters using SGD with Nesterov update
rule. The learning rate is 10−2 (momentum factor 0.9) and the batch size is 128.
We also clip the gradient norm to 1.0. Results are reported in Fig. 2.3 (top), where
we plot the MSE on the test set for every epoch of training. LSTM-WM achieves
the best convergence time for T = 200, while the final performance on this setup
is similar among the three models. The effectiveness of WMCs is striking in the
T = 400 setup. In fact, the proposed model solves the adding problem around
epoch 145, while the other two architectures cannot learn the task and are stuck
on the trivial solution.

In the copying task [78], the network observes a sequence of 10 input symbols,
waits for T time steps (we use T = 100 and T = 200), and then must reproduce
the same sequence as output. For this experiment, we adopt the same setup
described in [10]. We keep the same implementation details described for the
adding problem, except that we train for 500 epochs. In Fig. 2.3 (center), we
plot the test accuracy achieved by the three models at each epoch. In both setups,
WMCs play an important role in terms of final performance and convergence
time. As in the adding problem, the performance gain given by the proposed
architecture is more evident when working on longer sequences: for T = 200,
WMCs outperform peephole LSTM and vanilla LSTM by around +25% and
+40%.

2.4.2 Permuted Sequential MNIST
The sequential MNIST (sMNIST) [97] is the sequential version of the MNIST
digit recognition task [98]. In this task, the image pixels are fed sequentially to the
network (from left to right, and top to bottom). The permuted sequential MNIST
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Model sMNIST pMNIST

iRNN [97] 97.00 82.00
uRNN [10] 95.10 91.40
h-detach [12] 98.50 92.30

LSTM (h = 128) 98.16 92.94
LSTM (h = 256) 97.68 93.97
LSTM-PH (h = 128) 98.58 93.25
LSTM-PH (h = 256) 98.33 93.40
LSTM-WM (h = 128) 98.63 93.97

Table 2.1: Test accuracy on the sequential MNIST task.

(pMNIST) is a sequential version of the MNIST digit recognition problem in
which the pixels are permuted in a random but fixed order. In both tasks, the goal
is to predict the correct digit label after the last input pixel. Following the setup
proposed in [12], we use 50k images for training, 10k for validation, and 10k to
test our models. The experimental setup is as follows. We set the hidden size to
N = 128 for all the networks, and train for 200 epochs using SGD with learning
rate 10−2 and batch size 128 (momentum 0.9 and Nesterov update rule). We clip
the gradient norms to 1.0.

Fig. 2.3 (bottom) reports the mean test accuracy of the three LSTM variants
for both setups. We report the standard error of the mean as a shaded area. For
the sMNIST task, peephole LSTM performs slightly better than vanilla LSTM.
LSTM with Working Memory Connections, instead, outperforms the competing
architectures in terms of final accuracy and convergence speed. In particular,
our architecture employs only 50 epochs to get above 92% accuracy, while other
models are still generally stuck around 65% (vanilla LSTM) and 82% (LSTM-PH).
In this experiment, we also find out that WMCs help stabilize training. In fact, the
area given by the standard error of the mean is much thicker for our approach than
for the other two variants, in particular during the early stages of training. On the
pMNIST task, all the models achieve good final results, with LSTM with Working
Memory Connections still being the best option.

Numerical results, reported in Table 2.1, confirm that our model outperforms
the classic LSTM by a discrete margin (+0.47% and +1.03% on the sequential
and permuted MNIST respectively). Since WMCs introduce additional learnable
parameters in the LSTM structure, we also compare with vanilla and peephole
LSTM with increased hidden size (256 instead of 128). Note that, in this setting,
LSTM and LSTM-PH have more than 2× the number of learnable parameters
of LSTM-WM. Despite this, LSTM-WC achieves the best results on both tasks.
It is worth noting that, while additional parameters in vanilla LSTM improves
the results on pMNIST, they are not helpful in the sMNIST task. The flexibility
given by WMCs, instead, allows the proposed model to achieve the best result in
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Test Bit per Character (BPC)

Fixed # Params (∼ 2.2M ) Fixed # Hidden Units (512)
Model TPTB = 150 TPTB = 300 TPTB = 150 TPTB = 300

LSTM 1.334 ± 0.0006 1.343 ± 0.0004 1.386 ± 0.0005 1.395 ± 0.0005
LSTM-PH 1.339 ± 0.0048 1.343 ± 0.0009 1.383 ± 0.0004 1.394 ± 0.0005
LSTM-WM 1.299 ± 0.0005 1.302 ± 0.0008 1.299 ± 0.0005 1.302 ± 0.0008

Table 2.2: Mean test bit per character on the PTB test set. Error range indicates
the standard error of the mean.

both setups. Always in Table 2.1, we compare with two state-of-the-art RNNs [10,
97], and with a training algorithm for LSTM [12]. The proposed LSTM-WC
outperforms the competitors in terms of test accuracy.

2.4.3 Penn Treebank Character-Level Language Modeling
Character-level language modeling requires to predict a single character at each
time step given an observed sequence of text. In our experiments on the Penn
Treebank (PTB) dataset [113], we evaluate the performance of the three different
LSTM variants in terms of test mean bits per character (BPC), where lower BPC
denotes better performance. We report the results in Table 2.2, where we compare
truncated back-propagation through time (TPTB) over 150 and 300 steps. Since
our connection introduces new learnable weights, we consider an additional setup
in which we keep a fixed number of parameters for the three networks. For this
experiment, we follow the setup proposed by Merity et al. [115], with the only
exception that we employ a single LSTM layer instead of three. The advantage of
using Working Memory Connections is more evident for equal number of hidden
units, where the proposed architecture overcomes the vanilla LSTM and peephole
LSTM by a significant margin. Even when the number of parameters is fixed for
all the models, LSTM-WC outperforms the competitors by 0.035 and 0.041 BPC
for TPTB = 150 and TPTB = 300 respectively. It is worth noting that peephole
LSTM performs similarly to or even worse than vanilla LSTM on this task.

2.4.4 Image Captioning
We evaluate the performance of our LSTM with Working Memory Connections
on the image captioning task, which consists of generating textual descriptions
for images. We apply our approach to two different captioning models: Show and
Tell [166] and Up-Down [5]. The first model includes a single LSTM layer and
does not employ attention, while the second is composed of two LSTM layers and
integrates attention mechanisms over image regions. We use the Microsoft COCO
dataset [103] following the splits defined in [87]. To represent images, we employ
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Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE

No Attention, ResNet-152
LSTM 70.9 27.9 24.4 51.7 92.0 17.6
GRU 69.5 26.2 22.7 50.4 82.3 15.6
LSTM-PH 71.4 27.8 24.3 51.7 91.1 17.5
LSTM-WM 71.4 28.3 24.6 52.4 94.0 17.8

Attention, Faster R-CNN
LSTM 75.9 36.1 27.4 56.3 111.9 20.3
GRU 76.0 36.1 27.0 56.5 111.0 20.2
LSTM-PH 75.8 35.9 27.3 56.3 111.5 20.2
LSTM-WM 76.2 36.1 27.5 56.5 112.7 20.4

Table 2.3: Image captioning results on COCO test set.

a global feature vector extracted from the average pooling layer of ResNet-152 [73]
for the Show and Tell model, and multiple feature vectors extracted from Faster
R-CNN [137] for the Up-Down architecture. We train both models with Adam
optimizer [90] using a learning rate equal to 10−4. All other hyper-parameters are
left the same as those suggested in the original papers.

Numerical results are reported in Table 2.3 using standard captioning eval-
uation metrics (i.e. BLEU-1, BLEU-4 [126], METEOR [14], ROUGE [102],
CIDEr [165], and SPICE [4]). For all these, higher metric results indicate bet-
ter performance, with CIDEr being the metric that best correlates with human
judgment. In both settings, our LSTM-WM outperforms traditional LSTM and
LSTM-PH by a clear margin. Specifically, LSTM-WM improves the vanilla
LSTM results by 2.0 CIDEr points on the model without attention and 0.8 CIDEr
points on the model with attention over image regions, demonstrating the contri-
bution of WMCs also for this task. As an additional comparison, we replace the
LSTM layers with GRU layers. Numerical results suggest that there is not a clear
advantage in using GRUs instead of LSTMs for this task. In Fig. 2.4, we plot the
metric gap between LSTM-WM and the two competitors in terms of METEOR
and CIDEr. On the X-axis we report the length of the generated captions, meaning
that we consider the first x words of each predicted sentence. On the Y-axis, a 0
value means that our proposal performs equally, i.e. has no performance gap w.r.t.
the competitor, while a higher value indicates better performance for our model.
With this analysis, we aim to check whether the improvement given by WMCs can
be restricted to a particular subset of the dataset. As one can observe, the metric
gap generally increases with the caption length, especially w.r.t. peephole LSTM.
We can deduce that the contribution of WMCs escalates with the number of time
steps.
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Figure 2.4: Metric gaps on the image captioning task for increasing instruction
lengths.

2.5 Discussion
With Working Memory Connections, we show that information stored in the
LSTM cell should be accessible in the gate structure. We compare the perform-
ance of WMCs to a similar approach named peephole connections [60], and to
vanilla LSTM. We find out that the structure of WMCs allows for two distinct
improvements:

1. A more precise control of the gates. The multiplicative gates in the LSTM
block must regulate the information flowing through the cell, but they
cannot access the state of that same cell in the traditional LSTM formulation.
The presence of the cell state in the multiplicative gates motivates the
improvements of LSTM-WM w.r.t. vanilla LSTM.

2. Increased stability during training compared to peephole connections. Ex-
posing different projections of the cell state without squashing its content
seems to be a critical point for the LSTM-PH. This element of novelty in
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our design explains why WMCs provide a boost in performance even when
peepholes fail.

As a consequence of these two improvements, WMCs incorporate the theoretical
benefits of peephole connections, originally described by Gers et al. [60], with the
training stability and versatility of vanilla LSTM.

It is worth noting that, for tasks that do not require to access the content of
the memory cell, Working Memory Connections would not probably bring any
benefit in the LSTM formulation, while peepholes might still hinder the whole
learning process because of unstable updates.

At the same time, when training stacked LSTMs, the benefits given by WMCs
may become less significant. We suppose that this is due to the increased complex-
ity in the network structure, where multiple LSTM blocks can interact through
the various layers. Similarly, many architectures employ LSTMs as building
blocks together with different components, and the influence of WMCs in these
compound deep networks cannot be easily determined. Experiments on image
captioning, proposed in this Chapter, partially answer this question and prove that
WMCs afford a small yet existing improvement even in this scenario.

2.6 Conclusion
A current limitation of Long Short-Term Memory Networks consists in not letting
the cell state influence the gate dynamics directly. In this Chapter, we propose
Working Memory Connections (WMCs) for LSTM, which provide an efficient
way of using intra-cell knowledge inside the network. The proposed design per-
forms noticeably better than the vanilla LSTM and overcomes important issues in
previous formulations. We formally motivate this improvement as a consequence
of more stable training dynamics. Experimental results reflect the theoretical
benefits of the proposed approach and motivate further study in this direction.





Chapter 3
Explore and Explain: Joining
Exploration and Recounting

Embodied AI has been recently gaining attention as it aims to foster the devel-
opment of autonomous and intelligent agents. In this Chapter, we devise a novel
embodied setting in which an agent needs to explore a previously unknown envir-
onment while recounting what it sees during the path. In this context, the agent
needs to navigate the environment driven by an exploration goal, select proper
moments for description, and output natural language descriptions of relevant
objects and scenes. Our model integrates a novel self-supervised exploration
module with penalty, and a fully-attentive captioning model for explanation. Also,
we investigate different policies for selecting proper moments for explanation,
driven by information coming from both the environment and the navigation.
Experiments are conducted on photorealistic environments from the Matterport3D
dataset and investigate the navigation and explanation capabilities of the agent as
well as the role of their interactions.

This Chapter is related to publication [3], as reported in the List of Publications.
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3.1 Introduction
Only a few decades ago, intelligent robots that could autonomously walk and
talk existed only in the bright minds of book and movie authors. People used to
think about artificial intelligence only as a fictional feature, as the machines they
interacted with were purely reactive and showed no form of autonomy. Nowadays,
intelligent systems are everywhere, with deep learning being the main engine of
the so-called AI revolution. More recently, advances in the field of Embodied AI
aim to foster the next generation of autonomous and intelligent robots. Progress
in this field includes visual navigation and instruction following [6], even though
current research is also focused on the creation of new research platforms for
simulation and evaluation [145, 175]. At the same time, tasks at the intersection of
computer vision and natural language processing are of particular interest for the
community, with image captioning being one of the most active areas [5, 42, 87].
By describing the content of an image or a video, captioning models can bridge
the gap between the black-box architecture and the user.

In this Chapter, we propose a new task at the intersection of Embodied AI,
computer vision, and natural language processing, and aim to create a robot that
can navigate through a new environment and describe what it sees. We call this
new task Explore and Explain since it tackles the problem of joint exploration and
captioning (Fig. 3.1). In this schema, the agent needs to perceive the environment
around itself, navigate it driven by an exploratory goal, and describe salient
objects and scenes in natural language. Beyond navigating the environment
and translating visual cues in natural language, the agent also needs to identify
appropriate moments to perform the explanation step.

It is worthwhile to mention that both exploration and explanation feature
significant challenges. Effective exploration without any previous knowledge of
the environment cannot exploit a reference trajectory and the agent cannot be
trained with classic methods from reinforcement learning [171]. To overcome this
problem, we design a self-supervised exploration module that is driven solely by
curiosity towards the new environment. In this setting, rewards are more sparse
than in traditional setups and encourage the agent to explore new places and to
interact with the environment.

While we are motivated by recent works incorporating curiosity in Atari and
other exploration games [2, 28, 129], the effectiveness of a curiosity-based ap-
proach in a photorealistic, indoor environment has not been tested extensively.
Some preliminary studies [136] suggest that curiosity struggles with embodied
exploration. In this Chapter, we show that a simple modification of the reward
function can lead to striking improvements in the exploration of unseen environ-
ments. Additionally, we encourage the agent to produce a description of what it
sees throughout the navigation. In this way, we match the agent internal state (the
measure of curiosity) with the variety and the relevance of the generated captions.
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A kitchen with 
white cabinets 
and a vase.

A white couch 
with pillows 
and a table.

A kitchen with 
a stove and 
a window.

A living room with
a fireplace and 
a large window.

Figure 3.1: We propose a novel setting in which an embodied agent performs
joint curiosity-driven exploration and explanation in unseen environments. While
navigating the environment, the agent must produce informative descriptions of
what it sees, providing a means of interpreting its internal state.

Such matching offers a proxy for the desirable by-product of interpretability. In
fact, by looking at the caption produced, the user can more easily interpret the
navigation and perception capabilities of the agent, and the motivations of the
actions it takes [41]. In this sense, our work is related to goal-driven explainable
AI, i.e. the ability of autonomous agents to explain their actions and the reasons
leading to their decisions [8].

Previous work on image captioning has mainly focused on recurrent neural net-
works. However, the rise of Transformer [164] and the great effectiveness shown
by the use of self-attention have motivated a shift towards recurrent-free architec-
tures. Our captioning algorithm builds upon recent findings on the importance of
fully-attentive networks for image captioning and incorporates self-attention both
during the encoding of the image features and in the decoding phase.

Finally, to bridge exploration and recounting, our model can count on a novel
speaker policy, which regulates the speaking rate of our captioner using inform-
ation coming from the agent perception. We call our architecture eX2, from the
name of the task: Explore and Explain.
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Our main contributions are as follows:

• We propose a new setting for Embodied AI, Explore and Explain in which
the agent must jointly deal with two challenging tasks: exploration and
captioning of unseen environments.

• We devise a novel solution involving curiosity for exploration. Thanks to
curiosity, we can learn an efficient policy which can easily generalize to
unseen environments.

• We are the first, to the best of our knowledge, to apply a captioning algorithm
exclusively to indoor environment for robotic exploration. Results are
encouraging and motivate further research.

3.2 Related Work
Our work is related to the literature on embodied visual exploration, curiosity-
driven exploration, and captioning. In the following, we provide an overview
of the most important work in these settings, and we briefly describe the most
commonly used interactive environments for navigation agents.
Embodied Visual Exploration. Current research on Embodied AI is mainly
focused on tasks that require navigating indoor locations. Vision-and-language
navigation [6, 95], point-goal and object-goal navigation [3, 171, 185] are all
tasks involving the ability for the agent to move across a previously unknown
environment. Very recently, Ramakrishnan et al. [136] highlighted the importance
of visual exploration in order to pre-train a generic embodied agent. While their
study is mainly focused on exploration as a mean to gather information and to
prepare for future tasks, we investigate the role of surprisal for exploration and
the consistency between navigation paths and the descriptions given by the agent
during the episodes.
Curiosity-driven Exploration. Curiosity-driven exploration is an important topic
in reinforcement learning literature. In this context, [125] provides a good sum-
mary on early works on intrinsic motivation. Among them, Schmidhuber [146]
and Sun et al. [157] proposed to use information gain and compression as intrinsic
rewards, while Klyubin et al. [92], and Mohamed and Rezende [116] adopted
the concept of empowerment as reward during training. Differently, Houthooft et
al. [81] presented an exploration strategy based on the maximization of information
gain about the agent’s belief of environment dynamics. Another common approach
for exploration is that of using state visitation counts as intrinsic rewards [17, 160].
Our work follows the strategy of jointly training forward and backward models for
learning a feature space, which has demonstrated to be effective in curiosity-driven
exploration in Atari and other exploration games [2, 28, 129]. To the best of our
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knowledge, we are the first to investigate this type of exploration algorithms in
photorealistic indoor environments.
Interactive Environments. When it comes to the training of intelligent agents,
an important role is played by the underlying environment. A first test bed for
research in reinforcement learning has been provided by the Atari games [18, 27].
However, these kind of settings are not suitable for navigation and exploration
in general. To solve this problem, many maze-like environments have been pro-
posed [16, 89]. However, agents trained on synthetic environments hardly adapt
to real world scenarios, because of the drastic change in terms of appearances.
Simulating platforms like Habitat [145], Gibson [175], and Matterport3D simu-
lator [6] provide a photorealistic environment to train navigation agents. Some
of these simulators only provide RGB equirectangular images as visual input [6],
while others employ the full 3D model and implement physic interactions with the
environment [145, 175].
Automatic Captioning. In the last few years, a large number of models has been
proposed for image captioning [5, 139, 177]. The majority of them use recurrent
neural networks as language models and a representation of the image which might
be given by the output of a CNN [139, 167], or by a time-varying vector extracted
with attention mechanisms over either a spatial grid of CNN features [177] or
multiple image region vectors extracted from a pre-trained object detector [5].
Regarding the training strategies, notable advances have been made by using
reinforcement learning to optimize non-differentiable captioning metrics [139].
Recently, following the strong advent of fully-attentive mechanisms in sequence
modeling tasks [164], different Transformer-based captioning models have been
presented [42, 74].

3.3 Proposed Method
The proposed method consists of three main parts: a navigation module, a speaker
policy, and a captioner. The last two components constitute the speaker module,
which is used to explain the agent first-person point of view. The explanation
is elicited by our speaker module basing on the information gathered during the
navigation. Our architecture is depicted in Fig. 3.2 and detailed below.

3.3.1 Navigation Module
The navigation policy takes care of the agent displacement inside the environment.
At each time step t the agent acquires an observation xt from the surroundings,
performs an action at, and gets the consequent observation xt+1. The moves
available to the agent are simple, atomic actions such as rotate 15 degrees and step
ahead.
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Our navigation module consists of three main components: a feature embed-
ding network, a forward model, and an inverse model. The discrepancy of the
predictions of dynamics models with the actual observation is measured by a
reward signal rt, which is then used to stimulate the agent to move towards more
informative states.
Embedding Network. At each time step t, the agent observes the environment
and gathers xt. This observation corresponds to the raw RGB-D pixels coming
from the forward-facing camera of the agent. Yet, raw pixels are not optimal to
encode the visual information [28]. For this reason, we employ a convolutional
neural network φ to encode a more efficient and compact representation of the
surrounding environment. We call this embedded representation φ(xt). To ensure
that the features observed by the agent are stable throughout the training, we do
not change the set of parameters θφ during training. This approach is shown to be
efficient for generic curiosity-based agents [28].
Forward Dynamics Model. Given an agent with policy π(φ(xt); θπ), represented
by a neural network with parameters θπ , the selected action at timestep t is given
by:

at ∼ π
(
φ(xt); θπ

)
. (3.1)

After executing the chosen action, the agent observes a new visual stimulus
φ(xt+1). The problem of predicting the next observation given the current input
and action to be performed can be defined as a forward dynamics problem:

φ̂(xt+1) = f
(
φ(xt), at; θF

)
, (3.2)

where φ̂(xt+1) is the predicted visual embedding for the next observation xt+1

and f is the forward dynamics model with parameters θF . The forward model is
trained to minimize the following loss function:

LF =
1

2

∥∥∥φ̂(xt+1)− φ(xt+1)
∥∥∥2
2

(3.3)

Inverse Dynamics Model. Given two consecutive observations (xt, xt+1), the
inverse dynamics model aims to predict the action performed at timestep t:

ât = g
(
φ(xt), φ(xt+1); θI

)
, (3.4)

where ât is the predicted estimate for the action at and g is the inverse dynamics
model with parameters θI . In our work, the inverse model g predicts a probability
distribution over the possible actions and it is optimized to minimize the cross-
entropy loss with the ground-truth action at performed in the previous time step:

LI = yt log ât, (3.5)
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where yt is the one-hot representation for at.
Curiosity-driven Exploration. The agent exploration policy π(φ(xt); θπ) is
trained to maximize the expected sum of rewards:

max
θπ

Eπ(φ(xt);θπ)

[∑
t

rt

]
, (3.6)

where the exploration reward rt at timestep t, also called surprisal [1], is given by
our forward dynamics model:

rt =
η

2

∥∥f(φ(xt), at
)
− φ(xt+1)

∥∥2
2
, (3.7)

with η being a scaling factor. The overall optimization problem can be written as
a composition of Eq. 3.3, 3.5, and 3.6:

min
θπ,θF ,θI

[
− λEπ(φ(xt);θπ)

[
Σtrt

]
+ βLF + (1− β)LI

]
(3.8)

where λ weighs the importance of the intrinsic reward signal w.r.t. the policy loss,
and β balances the contributions of the forward and inverse models.
Penalty for Repeated Actions. To encourage diversity in our policy, we devise a
penalty which triggers after the agent has performed the same move for t̃ timesteps.
This prevents the agent from always picking the same action and encourages the
exploration of different combinations of atomic actions.

We can thus rewrite the surprisal in Eq. 3.7 as:

rt =
η

2

∥∥f(φ(xt), at
)
− φ(xt+1)

∥∥2
2
− pt, (3.9)

where pt is the penalty at time step t. In the simplest formulation, pt can be
modeled with a scalar which is either 0 or equal to a constant p̃, after an action
has been repeated t̃ times.

3.3.2 Speaker Policy
As the navigation proceeds, new observations xt are acquired and rewards rt
are obtained at each time step. Based on these, a speaker policy can be defined,
that activates the captioning module. Different types of information from the
environment and the navigation module allow defining different policies. In
this work, we consider three policies, namely: object-driven, depth-driven, and
curiosity-driven.
Object-driven Policy. Given the RGB component of the observation xt, relevant
objects can be recognized. When at least a minimum number O of such objects
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are observed, the speaker policy triggers the captioner. The idea behind this policy
is to let the captioner describe the scene only when objects that allow connoting
the different views are present.
Depth-driven Policy. Given the depth component of the observation xt, the
speaker policy activates the captioner when the mean depth value perceived D
is above a certain threshold. This way, the captioner is triggered only depending
on the distance of the agent from generic objects, regardless of their semantic
category.
Curiosity-driven Policy. Given the surprisal reward defined as in Eq. 3.7 and
possibly cumulated over multiple timesteps, S, the speaker policy triggers the
captioner when S is above a certain threshold. This policy is independent of the
type of information perceived from the environment but is instead closely related
to the navigation module. Thus, it helps to match the agent’s internal state with
the generated captions more explicitly than the other policies.

3.3.3 Captioning Module
When the speaker policy activates, a captioning module is in charge of producing
a description in natural language given the current observation xt. Following
recent literature on the topic, we here employ a visual encoder based on image
regions [138], and a decoder which models the probability of generating one word
given previously generated ones. In contrast to previous captioning approaches
based on recurrent networks, we propose to use a fully-attentive model for both
the encoding and the decoding stage, building on the Transformer model [164].
Region Encoder. Given a set of features from image regions R = {r1, ..., rN}
extracted from the agent visual view, our encoder applies a stack of self-attentive
and linear projection operations. As the former can be seen as convolutions on
a graph, the role of the encoder can also be interpreted as that of learning visual
relationships between image regions. The self-attention operator S builds upon
three linear projections of the input set, which are treated as queries, keys and
values for an attention distribution. Stacking region features R in matrix form, the
operator can be defined as follows:

S(R) = Attention(WqR,WkR,WvR), (3.10)

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V. (3.11)

The output of the self-attention operator is a new set of elements S(R), with the
same cardinality as R, in which each element of R is replaced with a weighted
sum of the values, i.e. of linear projections of the input.

Following the structure of the Transformer model, the self-attention operator S
is followed by a position-wise feed-forward layer, and each of these two operators
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is encapsulated within a residual connection and a layer norm operation. Multiple
layers of this kind are then applied in a stack fashion to obtain the final encoder.
Language Decoder. The output of the encoder module is a set of region encodings
R̃ with the same cardinality of R. We employ a fully-attentive decoder which is
conditioned on both previously generated words and region encodings, and is in
charge of generating the next tokens of the output caption. The structure of our
decoder follows that of the Transformer [164], and thus relies on self-attentive and
cross-attentive operations.

Given a partially decoded sequence of words W = {w0, w1, ..., wτ}, each
represented as a one-hot vector, the decoder applies a self-attention operation in
which W is used to build queries, keys and values. To ensure the causality of
this sequence encoding process, we purposely mask the attention operator so that
each word can only be conditioned to its left-hand sub-sequence, i.e. word wt is
conditioned on {wt′}t′≤t only. Afterwards, a cross-attention operator is applied
between W and R̃ to condition words on regions, as follows:

C(W, R̃) = Attention(WqW,WkR̃,WvR̃). (3.12)

As in the Transformer model, after a self-attention and a cross-attention stage,
a position-wise feed-forward layer is applied, and each of these operators is
encapsulated within a residual connection and a layer norm operation. Finally, our
decoder stacks together multiple decoder layers, helping to refine the understanding
of the textual input.

Overall, the decoder takes as input word vectors, and the t-th element of its
output sequence encodes the prediction of a word at time t+ 1, conditioned on
{wt}≤t. After taking a linear projection and a softmax operation, this encodes
a probability over words in the dictionary. During training, the model is trained
to predict the next token given previous ground-truth words; during decoding,
we iteratively sample a predicted word from the output distribution and feed it
back to the model to decode the next one, until the end of the sequence is reached.
Following the usual practice in image captioning literature, the model is trained to
predict an end-of-sequence token to signal the end of the caption.

3.4 Experimental Setup

3.4.1 Dataset
The main testbed for this work is Matterport3D [31], a photorealistic dataset of
indoor environments. Some of the buildings in the dataset contain outdoor com-
ponents like swimming pools or gardens, raising the difficulty of the exploration
task. The dataset is split into 61 scenes for training, 11 for validation, and 18 for
testing. It also provides instance segmentation annotations that we use to evaluate
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the captioning module. Overall, the dataset is annotated with 40 different semantic
categories. For both training and testing, we use the episodes provided by Habitat
API [145] for the PointGoal navigation task, employing only the starting point of
each episode. The size of the training set amounts to a total of 5M episodes, while
the test set is composed of 1 008 episodes.

3.4.2 Evaluation Protocol

Navigation Module. To quantitatively evaluate the navigation module, we use
a curiosity-based metric: we extract the sum of the surprisal values defined in
Eq. 3.7 every 20 steps performed by the agent, and then we compute the average
over the number of test episodes.

Captioning Module. Standard captioning methods are usually evaluated by com-
paring each generated caption against the corresponding ground-truth sentences.
However, in this setting, only the information on which objects are present on
the scene is available, thanks to the semantic annotations provided by the Matter-
port3D dataset. Therefore, to evaluate the performance of our captioning module,
we define two different metrics: a soft coverage measure that assesses how the
predicted caption covers all the ground-truth objects, and a diversity score that
measures the diversity in terms of described objects of two consecutively generated
captions.

In details, for each caption generated according to the speaker policy, we
compute the soft coverage measure between the ground-truth set of semantic
categories and the set of nouns in the caption. Given a predicted caption, we firstly
extract all nouns n from the sentence and we compute the optimal assignment
between them and the set of ground-truth categories c∗, using distances between
word vectors and the Hungarian algorithm [94]. We then define an intersection
score between the two sets as the sum of assignment profits. Our coverage measure
is computed as the ratio of the intersection score and the number of ground-truth
semantic classes:

Cov(n, c∗) =
I(n, c∗)

#c∗
, (3.13)

where I(·, ·) is the intersection score, and the # operator represents the cardinality
of the set of ground-truth categories.

Since images may contain small objects which not necessarily should be
mentioned in a caption describing the overall scene, we define a variant of the
coverage measure by thresholding over the minimum object area. In this case, we
consider c∗ as the set of objects whose overall areas are greater than the threshold.

For the diversity measure, we consider the sets of nouns extracted from two
consecutively generated captions, indicated as nt and nt+1, and we define a soft
intersection over union score between the two sets of nouns. Also in this case, we
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compute the intersection score between the two sets using word distances and the
Hungarian algorithm to find the optimal assignment. Recalling that set union can
be expressed in function of an intersection, the final diversity score is computed
by subtracting the intersection over union score from 1 (i.e. the Jaccard distance
between the two sets):

Div(nt,nt+1) = 1− I(nt,nt+1)

#nt + #nt+1 − I(nt,nt+1)
, (3.14)

where I(·, ·) is the intersection score previously defined, and the # operator
represents the cardinality of the sets of nouns.

We evaluate the diversity of generated captions with respect to the three speaker
policies described in Sec. 3.3.2 and considering different thresholds for each policy
(i.e. number of objects, mean depth value, and surprisal score). For each speaker
policy and selected threshold, the agent is triggered a different number of times
thus generating a variable number of captions during the episode. We define the
agent’s overall loquacity as the number of times it is activated by the speaker
policy according to a given threshold. In the experiments, we report the loquacity
values averaged over the test episodes.

3.4.3 Implementation and Training Details

Navigation Module. Navigation agents are trained using only visual inputs,
with each observation converted to grayscale, cropped and re-scaled to a 84 ×
84 size. A stack of four historical observations [xt−3, xt−2, xt−1, xt] is used
for training in order to model temporal dependencies. We adopt PPO [147] as
learning algorithm and employ Adam [90] as optimizer. The learning rate for
all networks is set to 10−4 and the length of rollouts is equal to 128. For each
rollout we make 3 optimization steps. The features φ(xt) used by the forward
and backward dynamics networks are 512-dimensional and are obtained using a
randomly initialized convolutional network φ with fixed weights θφ, following the
approach in [28].

The model is trained using the splits described in Sec. 3.4.1, stopping the
training after 10 000 updates of the agent. The length of an exploration episode
is 1 000 steps. In our experiments, we set the parameters reported in Eq. 3.8 to
λ = 0.1 and β = 0.2, respectively. Concerning the penalty pt given to the agent
to stimulate diversity (Eq. 3.9), we set pt = p̃ = 0.01 after the same action is
repeated for t̃ = 5 times.
Speaker Policy. For the object-driven policy, we use the instance segmentation
annotations provided by the Matterport3D dataset [31]. For this policy, we select
15 of the 40 semantic categories in the dataset, discarding the contextual ones,
which would not be discriminative for the different views acquired by the agent,
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as for example wall, floor, and ceiling. This way, we can better evaluate the
effect of the policy without it being affected by the performance of an underlying
object detector of recognizing objects in the agent’s current view. Also for the
depth-driven policy, we obtain the depth information of the current view from the
Matterport3D dataset, averaging the depth values to extract a single score. In the
curiosity-driven policy, we consider the sum of surprisal scores extracted over the
last 20 steps, obtained by the agent during navigation.

Captioning Module. To represent image regions, we use Faster R-CNN finetuned
on the Visual Genome dataset [5, 138], thus obtaining a 2048-dimensional feature
vector for each region. To represent words, we use one-hot vectors and linearly
project them to the input dimensionality of the model, d. We also employ sinus-
oidal positional encodings [164] to represent word positions inside the sequence,
and sum the two embeddings before the first encoding layer. In both region en-
coder and language decoder, we set the dimensionality d of each layer to 512, the
number of heads to 8, and the dimensionality of the inner feed-forward layer to
2048. We use dropout with keep probability 0.9 after each attention layer and after
position-wise feed-forward layers.

Following a standard practice in image captioning [5, 139], we train our model
in two phases using image-caption pairs coming from the COCO dataset [103].
Firstly, the model is trained with cross-entropy loss to predict the next token given
previous ground-truth words. Then, we further optimize the sequence generation
using reinforcement learning employing a variant of the self-critical sequence
training [139] on sequences sampled using beam search [5]. Pre-training with
cross-entropy loss is done using the learning rate scheduling strategy defined
in [164] with a warmup equal to 10 000 iterations. Then, during finetuning with
reinforcement learning, we use the CIDEr-D score [165] as reward and a fixed
learning rate equal to 5−6. We train the model using the Adam optimizer [90]
and a batch size of 50. During CIDEr-D optimization and caption decoding, we
use beam search with a beam size equal to 5. To compute coverage and diversity
metrics and for extracting nouns from predicted captions, we use the spaCy NLP
toolkit1. We use GloVe word embeddings [131] to compute word similarities
between nouns and semantic class names.

3.5 Experimental Results

3.5.1 Navigation Results

As defined in Sec. 3.4.2, we evaluate the performance of our navigation agents
by computing the average surprisal score over test episodes. Results are reported

1https://spacy.io/

https://spacy.io/


38 CHAPTER 3. EXPLORE AND EXPLAIN

Navigation Module Surprisal

Random Exploration 0.333

eX2 w/o Penalty for repeated actions (RGB only) 0.193
eX2 w/o Penalty for repeated actions (Depth only) 0.361
eX2 w/o Penalty for repeated actions (RGB + Depth) 0.439

eX2 0.697

Table 3.1: Surprisal scores for different navigation policies obtained during the
agent exploration of the environment.

in Table 3.1 and show that our complete method (eX2) outperforms all other
variants, achieving a significantly greater surprisal score than our method without
penalty. In particular, the final performance greatly benefits from using both
visual modalities (RGB and depth), instead of using a single visual modality to
represent the scene. Notably, random exploration (e.g. sampling at from a uniform
distribution over the available actions at each time step t) proves to be a strong
baseline for this task, performing better than our single-modality RGB agent.
Nonetheless, our final agent greatly outperforms the baselines, scoring 0.364 and
0.258 above the random policy and the vanilla curiosity-based agent respectively.

Qualitative Analysis. In Fig. 3.3, we report some top-down views from the testing
scenes, together with the trajectory from three different navigation agents: the
random baseline, our approach without the penalty for repeated action described
in Sec. 3.3.1, and our full model. We notice that the agent without penalty usually
remains in the starting area and thus has some difficulties in exploring the whole
environment. Instead, our complete model demonstrates better results as it is able
to explore a much wider area within the environment. Thus, we conclude that
the addition of a penalty for repeated actions in the final reward function is of
central importance when it comes to stimulating the agent towards the exploration
of regions far from the starting point.

3.5.2 Speaker Results
Here, we provide quantitative and qualitative results for our speaker module, which
is composed of a policy and a captioner. The policy is in charge of deciding when
to activate the captioner, which in turns generates a description of the first-person
view of the agent. Results are reported in Table 3.2 and discussed below.

Speaker Policy. Among the three different policies, the object-driven speaker
performs the best in terms of coverage and diversity. In particular, setting a low
threshold (O ≥ 1) provides the highest scores. At the same time, the agent tends
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Random Exploration w/o Penalty eX2

Figure 3.3: Agent trajectories in sample navigation episodes.

to speak more often, which is desirable in a visually rich environment. As the
threshold for O gets higher, performances get worse. This indicates that, as the
number of object in the scene increases, there are many details that the captioner
cannot describe. The same applies for the depth-driven policy: while the agent
tends to describe well items that are closer, it experiences some troubles when
facing an open space with more distant objects (D ≥ 0.75).

Instead, our curiosity-driven speaker shows a more peculiar behaviour: as the
threshold grows, results get better in terms of diversity, while the coverage scores
are quite stable (only −0.005% in terms of Cov>1%). It is also worth mentioning
that our curiosity-based speaker can be adopted in any kind of environment, as the
driving metric is computed from the raw RGB-D input. The same does not apply
in an object-driven policy, since the agent needs semantic information. Further,
the curiosity-driven policy employs a learned metric, hence being more related to
the exploration module.
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A bathroom with a 

bathtub and a window.

A bedroom with a bed and           

a painting on the wall.

A living room with a couch 

and a television.

A kitchen with a 

refrigerator and a table.

A living room with a 

fireplace and a table.

A kitchen with white 

cabinets and a glass door.

Figure 3.4: Sentences generated on sample images extracted from eX2 navigation
trajectories. For each image, we report the relevant objects present on the scene
and we underline their mentions in the caption.

From all these observations, we can conclude that curiosity not only helps
training navigation agents, but also represents and important metric when bridging
cross-modal components in embodied agents.

Captioner. When evaluating the captioning module, we compare the performance
using a different number of encoding and decoding layers. As it can be seen
from Table 3.2, the captioning model achieves the best results when composed
of 2 layers for coverage and 1 layer for diversity. While this is in contrast with
traditional Transformer-based models [164], that employ 6 or more layers, it is
in line with recent research on image captioning [42], which finds beneficial to
adopt fewer layers. At the same time, a more lightweight network can possibly be
embedded in many embodied agents, thus being more appropriate for our task.

Qualitative Analysis. We report some qualitative results for eX2 in Fig. 3.4.
To ease visualization, we underline the items mentioned by the captioner in
the sentence, and highlight them with a bounding box of the same color in the
corresponding input image. Our agent can explain the scene perceived from a
first-person, egocentric point of view. We can notice that eX2 identifies all the
main objects in the environment and produces a suitable description even when
the view is partially occluded.
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3.6 Conclusion
In this Chapter, we have presented a new setting for Embodied AI that is composed
of two tasks: exploration and captioning. Our agent eX2 uses intrinsic rewards
applied to navigation in a photorealistic environment and a novel speaker module
that generates captions. The captioner produces sentences according to a speaker
policy that could be based on three metrics: object-driven, depth-driven, and
curiosity-driven. The experiments show that eX2 is able to generalize to unseen
environments in terms of exploration, while the speaker policy functions to filter
the number of time steps where the caption is actually generated. We hope that
our work serves as a starting point for future research on this new coupled-task
of exploration and captioning. Our results with curiosity-based navigation in
photorealistic environments and with the speaker module motivate further works
in this direction.



Chapter 4
Spot the Difference: Embodied
Agents in Changing Environments

Embodied AI is a recent research area that aims at creating intelligent agents that
can move and operate inside an environment. Existing approaches in this field
demand the agents to act in completely new and unexplored scenes. However, this
setting is far from realistic use cases that instead require executing multiple tasks
in the same environment. Even if the environment changes over time, the agent
could still count on its global knowledge about the scene while trying to adapt
its internal representation to the current state of the environment. To make a step
towards this setting, we propose Spot the Difference: a novel task for Embodied
AI where the agent has access to an outdated map of the environment and needs
to recover the correct layout in a fixed time budget. To this end, we collect a
new dataset of occupancy maps starting from existing datasets of 3D spaces and
generating a number of possible layouts for a single environment. This dataset
can be employed in the popular Habitat simulator and is fully compliant with
existing methods that employ reconstructed occupancy maps during navigation.
Furthermore, we propose an exploration policy that can take advantage of previous
knowledge of the environment and identify changes in the scene faster and more
effectively than existing agents. Experimental results show that the proposed
architecture outperforms existing state-of-the-art models for exploration on this
new setting.

This Chapter is related to publication [10], as reported in the List of Publications.

43
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4.1 Introduction
Imagine you have just bought a personal robot, and you ask it to bring you a cup
of tea. It will start roaming around the house while looking for the cup. It probably
will not come back until some minutes, as it is new to the environment. After
the robot knows your house, instead, you expect it to perform navigation tasks
much faster, exploiting its previous knowledge of the environment while adapting
to possible changes of objects, people, and furniture positioning. Embodied AI
has recently gained a lot of attention from the research community, with amazing
results in challenging tasks such as visual exploration [136] and navigation [33,
93, 135]. However, in the current setting, the environment is completely unknown
to the agent as a new episode begins. We believe that this choice is not supported
by real-world experience, where information about the environment can be stored
and reused for future tasks. As agents are likely to stay in the same place for long
periods, such information may be outdated and inconsistent with the actual layout
of the environment. Therefore, the agent also needs to discover those differences
during navigation. In this Chapter, we introduce a new task for Embodied AI,
which we name Spot the Difference. In the proposed setting, the agent must identify
all the differences between an outdated map of the environment and its current
state – a challenge that combines visual exploration using monocular images and
embodied navigation with spatial reasoning. To succeed in this task, the agent
needs to develop efficient exploration policies to focus on likely changed areas
while exploiting priors about objects of the environment. We believe that this task
could be useful to train agents that will need to deal with changing environments.

Recent work on Embodied AI has tackled the training of embodied agents
capable of navigating and locating objects [30, 33, 93, 170]. One of the key
factors for success in the field consists in building map representations in which
knowledge about the environment can be stored while the agent proceeds [32,
135]. However, the dominant training and evaluation protocol involves an agent
initialized from scratch that sees the environment for the first time [3]. Another
line of work [36, 86, 108, 114, 136], instead, introduces a mapping phase of the
environment to increase the performance on both exploration and down-stream
tasks. Unfortunately, if the environment changes over time, the agent needs to
rebuild a full representation from scratch and cannot count on an efficient policy to
update its internal representation of the environment. In this Chapter, we simulate
the natural evolution of an environment and design a specific policy to navigate in
changing environments seamlessly.

Due to the high cost of 3D acquisitions from the real world, the existing
datasets of photorealistic 3D spaces [31, 175] do not contain different layouts for
the same environment. In this Chapter, we create a reproducible set-up to generate
alternative layouts for an environment. We semi-automatically build a dataset of
2D semantics occupancy maps in which the objects can be removed and rearranged
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Original Map Sample Manipulated Maps

static
table
chair
couch

toilet
bathtub
sink
seating

tv
counter
cabinet
forniture

shower
bed
drawers
stool

plant
shelving
gym equipment
appliances

Figure 4.1: Generation of alternative states of an environment: original and sample
manipulated semantic maps.

while the area and the position of architectural elements do not change (Fig. 4.1).
In the proposed setting, the agent is deployed in an interactive 3D environment and
provided with a map from our produced dataset, which represents the information
retained while performing tasks in a past state of the environment.

To train agents that can deal with changing environments efficiently, we
develop a novel reward function and an approach for navigation aiming at finding
relevant differences between the previous layout of the environment and the current
one. Our method is based on the recent Active Neural SLAM paradigm proposed
in [32] and [135]. Differently from previous proposals, though, it can read and
update the given map to identify relevant differences in the environment in the
form of their projections on the map. Our dataset and architecture can be employed
with the Habitat simulator [145], a popular research platform for Embodied AI that
renders photorealistic scenes and that enables seamless sim-to-real deployment
of navigation agents [85]. Experimental results show that our approach performs
better than existing state-of-the-art architectures for exploration in our newly-
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proposed task. We also compare with different baselines and evaluate our agent in
terms of percentage of area seen, percentage of discovered differences, and metric
curves at varying exploration time budgets.

4.2 Related Work
Current research directions on Embodied AI for navigation agents can be categor-
ized according to the quantity of knowledge about the environment provided to the
agent prior to performing the task [3]. The first direction focuses on the scenario
in which the agent is deployed in a completely new environment for which it has
no prior knowledge [32, 70, 86]. Running exploration in parallel with a target-
driven navigation task resulted in an effective approach to solve the latter (e.g.,
object-goal navigation [33] and point-goal navigation [135]). Other directions
consider the case in which the agent can exploit pre-acquired information about
the environment [34, 43] when performing a navigation task. Such pre-acquired
information can be either partial [144, 151, 182] or complete [30, 36, 136]. A
major limitation of such approaches is that the obtained map representation is
assumed to conform perfectly with the environment where the down-stream task
will be performed.

In this Chapter, we explore a fourth direction, in which the pre-acquired map
provided to the agent is incomplete or incorrect due to changes occurred in the
environment over time. Common strategies to deal with changing environments en-
tail disregarding dynamic objects as landmarks when performing SLAM [25, 143]
and applying local policies to avoid them when navigating [111]. An alternative
strategy is learning to predict geometric changes based on experience, as done
in [119], where the environment is represented as a traversability graph. The
main limitation of this strategy is its computational intractability when considering
dense metric maps of wide areas, as in our case.

4.3 Proposed Setting
In the first part of this Section, we introduce a new task for embodied agents,
named Spot the Difference. We then describe the newly-proposed dataset that we
create to enable this setting. Finally, we propose an architecture for embodied
agents to tackle the defined task.

4.3.1 Spot the Difference: Task Definition
At the beginning of an episode, the agent is spawned in a 3D environment and
is given a pre-built occupancy map M , representing its spatial knowledge of the
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environment, i.e. a previous state of the environment that is now obsolete:

M = (mij) ∈ [0, 1], 0 ≤ i, j < W, (4.1)

where mij represents the probability of finding an obstacle at coordinates (i, j).
The task entails exploring the current environment to recognize all the differences
with respect to the state in which M was computed, in the form of free and
occupied space. To accomplish the task, the agent should build a correct occupancy
map of the current environment starting from M , recognizing and focusing on
parts that are likely to change (e.g., the middle of wide rooms rather than tight
corridors).

For every episode of Spot the Difference, the agent is given a time budget of
T time-steps. At time t = 0, the agent holds the starting map representation M .
At each time-step t, the map is updated depending on the current observation to
obtain Mt. Whenever the agent discovers a new object or a new portion of free
space, the internal representation of the map changes accordingly. The goal is
to gather as much information as possible about changes in the environment by
the end of the episode. To measure the agent performance, we compare the final
map MT produced by the agent with the ground-truth occupancy map M∗. In this
sense, the paradigm we adopt is the one of knowledge reuse starting from partial
knowledge.

4.3.2 Dataset Creation

Semantic Occupancy Map. Given a 3D environment, we place the agent in a
free navigable location with heading θ = 0° (facing eastward). We assume that the
input consists of a depth image and a semantic image and that the camera intrinsics
K are known. To build the Semantic Occupancy Map (SOM) of an environment,
we project each semantic pixel of the acquired scene into a 2-dimensional top-
down map: given a pixel with image coordinates (i, j) and depth value di,j , we
first recover its coordinates (x, y, z) with respect to the agent position. Then, we
compute the corresponding (u, v) pixel in map through an orthographic projection,
using the information about the agent position and heading:

xy
z

 = di,jK
−1

ij
1

 , and


u
v
0
1

 = Pv


x
y
z
1

 . (4.2)

We perform the same operation after rotating the agent by ∆θ = 30° until we
perform a span from 0° to 180°. To cover the whole scene, we repeat this procedure
placing the agent at a distance of 0.5m from the previous capture point, following
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Dataset Split Semantic Classes Scans Generated SOMs Episodes

MP3D Train 42 58 2070 ≈ 4.5M
MP3D Validation 42 9 160 320
MP3D Test 42 14 260 610
Gibson Validation 20 5 130 450

Table 4.1: Number of manipulated maps generated per dataset split.

the axis directions. The agent elevation is instead kept fixed. During this step, we
average the results of subsequent observations of overlapping portions of space.

After the acquisition, we obtain a SOM with C channels, where each pixel cor-
responds to a 5cm×5cm portion of space in the 3D environment. For each channel
c ∈ {0, ..., C}, the map values represent the probability that the corresponding
portion of space is occupied by an object of semantic class c.

Multiple Semantic Occupancy Maps for the Same Environment. The SOMs
obtained in the previous step can be seen as one possible layout for the correspond-
ing 3D environments. In order to create a dataset with different states (i.e. different
layouts) of the same environment, instead of manipulating the real-world 3D scenes
(changing the furniture position, removing chairs, etc.), we propose to modify the
SOM to create a set of plausible and different layouts for the environment.

First, we isolate the objects belonging to each semantic category by using an
algorithm for connected component labeling [66]. Then, we sample a subset of
objects to be deleted from the map and a subset of objects to be re-positioned
in a different free location of the map. During sampling, we consider categories
that have a high probability of being displaced or removed in the real world and
ignore non-movable semantic categories such as fireplaces, columns, and stairs.
After this step, we obtain a new SOM representing a possible alternative state
for the environment, which could be very different from the one in which the 3D
acquisition was taken. Sample manipulated maps can be found in Fig. 4.1.

Dataset Details. To generate alternative SOMs, we start from the Matterport 3D
(MP3D) dataset of spaces [31], which comprises 90 different building scans, and is
enriched with dense semantic annotations. We consider each floor in the building
and compute the SOM for that floor. For each map, we create 10 alternative
versions of that same environment. In this step, we discard the floors that have
few semantic objects (e.g., empty rooftops) or that are not fully navigable by the
agent. As a result, we retain 249 floors belonging to 81 different buildings, thus
generating a total of 2490 different semantic occupancy maps for these floors.
Finally, we split the dataset into train, validation, and test subsets.

As an additional test bed, we also build a set of out-of-domain maps (13
floors from 5 spaces) taken from the Gibson dataset [175], enriched with semantic
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annotations from [11], and manipulated as done for the MP3D dataset. For each
SOM, multiple episodes are generated by selecting different starting points. More
information about our dataset can be found in Table 4.1.

4.3.3 Agent Architecture
Our model for embodied navigation in changing environments comprises three
major components: a mapper module, a pose estimator, and a navigation policy
(which, in turn, consists of a global policy, a planner, and a local policy). An
overview of the proposed architecture is shown in Fig. 4.2 and described below.
Although the data we provide is enriched with semantic labels, our agent does not
make use of such information directly. This is in line with current state-of-the-art
architectures for embodied exploration that we choose as competitors.
Mapper. The mapper module takes as inputs an RGB observation ort and the
corresponding depth image odt , representing the first-person view of the agent at
time-step t, and outputs the agent-centric occupancy map vt of a V × V region in
front of the camera. Each pixel in vt corresponds to a 25mm× 25mm portion of
space and consists of two channels containing the probability of that cell being
occupied and explored, respectively. As a first step, we encode ort using the first
two blocks of ResNet-18 pre-trained on ImageNet, followed by a three-layer
CNN. We project the depth image odt using the camera intrinsics [36] and obtain
a preliminary map for the visible occupancy. We name the obtained feature
representations ôrt and ôdt , respectively. We then encode the two feature maps
using a U-Net [140]:

fµ(ôrt , ô
d
t ) = U-Netenc(ô

r
t , ô

d
t , µ), (4.3)

and decode the 2× V × V matrix of probabilities as:

vt = σ(U-Netdec(fµ(ôrt , ô
d
t ), φ)), (4.4)

where µ and φ represent the learnable parameters in the U-Net encoder and
decoder, respectively, and σ is the sigmoid activation function.

The computed agent-centric occupancy map vt is then registered in the global
occupancy map Mt−1 coming from the previous time-step to obtain Mt. To that
end, we use a geometric transformation to project vt in the global coordinate
system, for which we need a triple (x, y, θ) corresponding to the agent position
and heading in the environment. This triple is estimated by a specific component
that tracks the agent displacements across the environment, as discussed in the
following paragraph.
Pose Estimator. The agent can move across the environment using three actions:
go forward 0.25m, turn left 10°, turn right 10°. Since each action may produce a
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different outcome because of physical interactions with the environment (e.g.,
bumping into a wall) or noise in the actuation system, the pose estimator is used to
estimate the real displacement made at every time-step. This module takes as input
two consecutive RGB and depth observations, consisting in two pairs (ort−1, o

d
t−1)

and (ort , o
d
t ). Additionally, it accepts as input the agent-centric occupancy maps

(vt−1, vt) computed by the mapper at t− 1 and t. For each modality, we encode
information using a CNN followed by a fully-connected layer. We call these
intermediate representations ōrt , ō

d
t , and v̄t. Then, we compute a first estimate of

the relative displacement in terms of (x, y, θ) coordinates and heading for each
modality:

g(?) = W1max(W2 ?+b2, 0) + b1, (4.5)

with ? ∈ {ōrt , ōdt , v̄t}. We stack the vectors computed in Eq. 4.5 to obtain a
3 × 3 matrix G. Finally, we compute the agent displacement at time-step t
(∆xt,∆yt,∆θt) as:

(∆xt,∆yt,∆θt) =

3∑
i=1

αi ·Gi, (4.6)

αi = softmax(MLPi([ōrt , ō
d
t , v̄t])), (4.7)

where Gi indicates the i-th row of the G matrix, MLP is a three-layer fully-
connected network, and [·, ·, ·] denotes tensor concatenation. The actual agent
position (xt, yt, θt) is computed iteratively as:

(xt, yt, θt) = (xt−1, yt−1, θt−1) + (∆xt,∆yt,∆θt). (4.8)

We assume that the agent starting position is the triple (x0, y0, θ0) = (0, 0, 0).
Global Policy, Planner, and Local Policy. The sampling of atomic actions for the
exploration relies on a three-component hierarchical policy. The first component is
the global policy, which samples a long-term global goal on the map. An enriched
occupancy map M+

t ∈ [0, 1]4×W×W is obtained by stacking the occupancy map,
the map of visited states, and the one-hot representation of the agent location
(xt, yt). Then, we compute two versions of M+

t : one by cropping the map to an
agent-centered G × G area, and the other by max-pooling the map to the same
spatial resolution. The 8-channel tensor obtained by concatenating these two
versions of M+

t is fed to the global policy. The global policy consists of a CNN
that outputs a probability distribution over the G × G global action space. We
sample the global goal from this distribution, and then transform it in (x, y) global
coordinates.

The second component is a planner module, which employs the A* algorithm
to decode a local goal on the map. The local goal is an intermediate point, within
0.25m from the agent, along the trajectory towards the global goal. The last
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element of our navigation module is the local policy, which decodes the series
of atomic actions taking the agent towards the local goal. In particular, the local
policy is an RNN decoding the atomic action at to execute at every time-step.
The reward rlocalt given to the local policy is proportional to the reduction in the
Euclidean distance d between the agent position and the current local goal:

rlocalt = dt − dt−1. (4.9)

Following the hierarchical structure, a global goal is sampled every N time-
steps. A new local goal is computed if a new global goal is sampled, if the previous
local goal is reached, or if the local goal location is known to be not traversable.
Exploiting Past Knowledge for Efficient Navigation. The global policy is
trained using a two-term reward. The first term encourages exhaustive exploration
and is proportional either to the increase of area-coverage [36] or to the increase
of anticipated map accuracy as in [135]. Intuitively, the agent strives to maximize
the portion of the seen area and thus maximizes the knowledge gathered during
exploration. Moreover, since we consider a setting where a significant amount of
knowledge is already available to the agent, we add a reward term to guide the
agent towards meaningful points of the map. These correspond to the coordinates
where major changes are likely to happen.

Given the occupancy map of the agent at time t, Mt, the true occupancy map
for the same environment M∗, and a time budget of T time-steps for exploration,
we aim to minimize the following, for 0 < t ≤ T :

D =
∑

1[Mt 6= M∗] (4.10)

In other words, we want to maximize the number of pixels in the online reconstruc-
ted map Mt that the agent correctly shifts from free to occupied (and vice-versa)
during exploration. This leads to the reward term for difference discovery:

rdiff =
∑

1[Mt = M∗]−
∑

1[Mt−1 = M∗]. (4.11)

The proposed reward term is designed to encourage navigation towards areas
in the map that are more likely to contain meaningful differences (e.g., rooms
containing more objects that can be displaced or removed from the scene). Addi-
tionally, an agent trained with this reward will tend to avoid difficult spots that are
likely to produce a mismatch in terms of the predicted occupancy maps. This is
because errors in the mapping phase would result in a negative reward.

To train our model, we combine a reward promoting exploration and the more
specific reward on found differences to exploit semantic clues in the environment:

rglobalt = β1rexp + β2rdiff (4.12)
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where rexp is the reward term encouraging task-agnostic exploration (such as
coverage-based or anticipation-based rewards, as described in the next Section),
and β1 and β2 are two coefficients weighing the importance of the two elements.

4.4 Experiments and Results
In this Section, we detail our experimental setting and show experimental results
for our new proposed task.

4.4.1 Experimental Setup

Evaluation Metrics. To evaluate the performance in Spot the Difference, we
consider three main classes of metrics. First, we consider the percentage of
navigable area in the environment seen by the agent during the episode (Seen[%]).
Then, we evaluate the percentage of elements that have been correctly detected as
changed in the occupancy map (Acc.) and the pixel-wise Intersection over Union
for the changed occupancy map elements (IoU). Besides, we evaluate the task
as a two-class problem and compute the IoU score for objects that were added
in place of free space (IoU+) and for objects that were deleted during the map
creation (IoU−). In addition, to evaluate the performance independently from the
exploration capability, we propose to compute the metrics only on the portion of
space that the agent actually visited (mAcc. and mIoU).
Implementation Details. We conduct our experiment using Habitat [145], a
popular platform for Embodied AI in photo-realistic indoor environments [31, 175].
The agent observations are 128× 128 RGB-D images from the environment. The
learning algorithm adopted for training is PPO [147]. The learning rate is 10−3

for the mapper and 2.5 × 10−4 for the other modules. Every model is trained
for ≈ 6.5M frames using Adam optimizer [90]. A global goal is sampled every
N = 25 time-steps. The local and global policies are updated, respectively, every
N and 20×N time-steps, and the mapper is updated every 4×N time-steps. The
size of the local map is V = 101, while the global map size is set to W = 2001
for the MP3D dataset and to W = 961 for the Gibson dataset. The global policy
action space size G is 240. The reward coefficients {β1, β2} are set to {1, 10−2}
and {1, 10−1} when the exploration reward is based on coverage and anticipation
reward, respectively. The length of each episode is fixed to T = 1000 time-steps.
Competitors and Baselines. We consider the following competitors and variants
of the proposed method on two different setups: one where the agent position
is predicted by the agent (as in Eq. 4.8), and one where it has access to oracle
coordinates at every time-step.
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Difference Reward (DR): an exploration policy that maximizes the correctly pre-
dicted changes between M and M∗. This corresponds to setting β1 = 0 and
β2 = 1 in Eq. 4.12.

Coverage Reward (CR): an agent that explores the environment with an exploration
policy that maximizes the covered area and builds the occupancy map as it goes,
as reported in [135].

Anticipation Reward (AR): an agent that explores the environment with an explora-
tion policy that maximizes the covered area and the correctly anticipated values in
the occupancy map built as it goes, from [135]. Our proposed approach consists of
an agent trained with the combination of the difference reward with the coverage
reward (CR+DR) or with the anticipation reward (AR+DR).

Occupancy Anticipation (OccAnt): we also compare with the agent presented by
Ramakrishnan et al. [135] using the available pre-trained models, referenced to
as OccAnt. Note that OccAnt was trained on the Gibson dataset for the standard
exploration task and without any prior map. Thus, it is not directly comparable with
the other methods considered. We include it to gain insights into the performance
of an off-the-shelf state-of-the-art agent on our task.

4.4.2 Results

Results on MP3D dataset. As a first testbed, we evaluate the different agents on
the MP3D Spot the Difference test set. We report the results for this experiment
in Table 4.2. We observe that the agent combining a reward based on coverage
and our reward based on the differences in the environment (CR+DR) performs
best on all the pixel-based metrics and places second in terms of percentage of
seen area. It is worth noting that, even if the results in terms of the area seen are
not as high as the ones obtained by the CR agent, the addition of our Difference
Reward helps the agent to focus on more relevant parts, and thus, it can discover
more substantial differences. Additionally, predictions are more accurate and more
precise, as indicated by the 4.7% and 6.6% improvements in terms of Acc. and
IoU with respect to the CR competitor. Instead, a reward based on differences
alone is not sufficient to promote good exploration. In fact, although the DR
agent outperforms the CR and AR agents on some metrics, our reward alone does
not provide as much improvement as when combined with rewards encouraging
exploration (as for CR+DR and AR+DR).

Even in the oracle localization setup, the CR+DR agent achieves the best
results. Interestingly, the gap with the CR agent decreases to 1.1% and 0.1% in
terms of Acc. and IoU, respectively. This is because our CR+DR agent learns to
sample trajectories that can be performed more efficiently and without accumulat-
ing a high positioning error. For this reason, the performance boost given by the
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Figure 4.3: Value of accuracy and IoU for the different models at varying time-
steps on the MP3D test set.

oracle localization is lower. For both setups, our CR+DR agent outperforms the
state-of-the-art OccAnt agent for exploration on all the metrics.

Finally, in Fig. 4.3, we plot different values of Acc. over different time-steps
during the episodes. This way, we can evaluate the whole exploration trend.
We can observe that the proposed models incorporating the difference reward
outperform the competitors. In particular, the CR+DR agent scores first by a
significant margin. The performance gap can be noticed even in the first half of
the episode and tends to grow with the number of steps.

Results on Gibson dataset. The environments from the Gibson dataset [175] are
generally smaller than those in MP3D, and thus, they can be explored more easily
and exhaustively. We report the results for this experiment in Table 4.3. Also in this
experiment, the CR+DR agent performs best on all the metrics but the percentage
of the area seen. Although CR+DR explores 3.8% of the environment less than
the CR agent, it still overcomes the competitor by 2.5% and 7.7% in terms of Acc.
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Starting Map CR CR+DR Ground-truth Map

unchanged spotted differences differences to be found

Figure 4.4: Qualitative results comparing the performances of the CR and CR+DR
agents for different episodes.

and IoU. The AR+DR agent is the second-best in terms of Acc.. The OccAnt agent,
instead, is competitive in terms of area seen but achieves low Acc. and IoU metrics.
As for the oracle localization setup, the agent using only the proposed difference
reward (DR) performs the best on almost all the metrics. We can conclude that, for
small environments, and given an optimal localization system, our reward alone is
sufficient to surpass the competitors on Spot the Difference.

Qualitative Results. In Fig. 4.4, we report some qualitative results. Starting from
the left-most column, we present the starting map given to the agent as the episode
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begins, the results achieved by the CR agent, those of the proposed CR+DR agent,
and the ground-truth map. The differences that the agents have correctly identified
during the episode are highlighted in red. As it can be seen, the CR+DR agent
can identify more differences than the CR counterpart, even in small environments
(top row). As the size of the environments grows (bottom row), the performance
gap increases and the CR+DR agent outperforms its competitor.

4.5 Conclusion
In this Chapter, we proposed Spot the Difference: a new task for navigation agents
in changing environments. In this novel setting, the agent has to find all variations
that occurred in the environment with respect to an outdated occupancy map.
Since current datasets of 3D spaces do not account for such variety, we collected
a new dataset containing different layouts for the same environment. We tested
two state-of-the-art exploration agents on this task and proposed a novel reward
term to encourage the discovery of meaningful information during exploration.
The proposed agent outperforms the competitors and can identify changes in the
environment more efficiently. We believe that the results presented in this Chapter
motivate further research on this new proposed setting for Embodied AI.



Chapter 5
A Focus on Impact for Indoor
Exploration

Exploration of indoor environments has recently experienced a significant interest,
also thanks to the introduction of deep neural agents built in a hierarchical fashion
and trained with Deep Reinforcement Learning (DRL) on simulated environments.
Current state-of-the-art methods employ a dense extrinsic reward that requires the
complete a priori knowledge of the layout of the training environment to learn an
effective exploration policy. However, such information is expensive to gather in
terms of time and resources. In this Chapter, we propose to train the model with a
purely intrinsic reward signal to guide exploration, which is based on the impact
of the robot’s actions on its internal representation of the environment. So far,
impact-based rewards have been employed for simple tasks and in procedurally
generated synthetic environments with countable states. Since the number of
states observable by the agent in realistic indoor environments is non-countable,
we include a neural-based density model and replace the traditional count-based
regularization with an estimated pseudo-count of previously visited states. The
proposed exploration approach outperforms DRL-based competitors relying on
intrinsic rewards and surpasses the agents trained with a dense extrinsic reward
computed with the environment layouts. We also show that a robot equipped with
the proposed approach seamlessly adapts to PointGoal navigation and real-world
deployment.

This Chapter is related to publication [9], as reported in the List of Publications.

59
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5.1 Introduction
Robotic exploration is the task of autonomously navigating an unknown envir-
onment with the goal of gathering sufficient information to represent it, often
via a spatial map [155]. This ability is key to enable many downstream tasks
such as planning [148] and goal-driven navigation [117, 145, 171]. Although a
vast portion of existing literature tackles this problem [32, 36, 123, 135], it is not
yet completely solved, especially in complex indoor environments. The recent
introduction of large datasets of photorealistic indoor environments [31, 175] has
eased the development of robust exploration strategies, which can be validated
safely and quickly thanks to powerful simulating platforms [48, 145]. Moreover,
exploration algorithms developed on simulated environments can be deployed in
the real world with little hyperparameter tuning [23, 85, 163], if the simulation is
sufficiently realistic.

Most of the recently devised exploration algorithms exploit deep reinforcement
learning (DRL) [183], as learning-based exploration and navigation algorithms are
more flexible and robust to noise than geometric methods [36, 121, 136]. Despite
these advantages, one of the main challenges in training DRL-based exploration
algorithms is designing appropriate rewards. In this Chapter, we propose a new
reward function that employs the impact of the agent actions on the environment,
measured as the difference between two consecutive observations [134], discoun-
ted with a pseudo-count [17] for previously-visited states (see Fig 5.1). So far,
impact-based rewards [134] have been used only as an additional intrinsic reward
in procedurally-generated (e.g. grid-like mazes) or singleton (i.e. the test envir-
onment is the same employed for training) synthetic environments. Instead, our
reward can deal with photorealistic non-singleton environments. To the best of
our knowledge, this is the first work to apply impact-based rewards to this setting.

Recent research on robot exploration proposes the use of an extrinsic reward
based on occupancy anticipation [135]. This reward encourages the agent to
navigate towards areas that can be easily mapped without errors. Unfortunately,
this approach presents a major drawback, as this reward heavily depends on the
mapping phase, rather than focusing on what has been already seen. In fact, moving
towards new places that are difficult to map would produce a very low occupancy-
based reward. Moreover, the precise layout of the training environments is not
always available, especially in real-world applications. To overcome these issues,
a different line of work focuses on the design of intrinsic reward functions, that can
be computed by the agent by means of their current and past observations. Some
examples of recently proposed intrinsic rewards for robot exploration are based
on curiosity [22], novelty [136], and coverage [32]. All these rewards, however,
tend to vanish with the length of the episode because the agent quickly learns to
model the environment dynamics and appearance (for curiosity and novelty-based
rewards) or tends to stay in previously-explored areas (for the coverage reward).
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Figure 5.1: The robot is encouraged to take actions that maximize the difference
between two consecutive observations.

Impact, instead, provides a stable reward signal throughout all the episode [134].
Since robot exploration takes place in complex and realistic environments that

can present an infinite number of states, it is impossible to store a visitation count
for every state. Furthermore, the vector of visitation counts would consist of a
very sparse vector, and that would cause the agent to give the same impact score to
nearly identical states. To overcome this issue, we introduce an additional module
in our design to keep track of a pseudo-count for visited states. The pseudo-count
is estimated by a density model trained end-to-end and together with the policy.
We integrate our newly-proposed reward in a modular embodied exploration and
navigation system inspired by that proposed by Chaplot et al. [32] and consider two
commonly adopted collections of photorealistic simulated indoor environments,
namely Gibson [175] and Matterport 3D (MP3D) [31]. Furthermore, we also
deploy the devised algorithm in the real world. The results in both simulated
and real environments are promising: we outperform state-of-the-art baselines
in simulated experiments and demonstrate the effectiveness of our approach in
real-world experiments.

5.2 Related Work

Geometric Robot Exploration Methods. Classical heuristic and geometric-
based exploration methods rely on two main strategies: frontier-based explora-
tion [178] and next-best-view planning [63]. These methods have been largely
used and improved [24, 79, 121] or combined in a hierarchical exploration al-
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gorithm [148, 183]. However, when applied with noisy odometry and localiza-
tion sensors or in highly complex environments, geometric approaches tend to
fail [36, 121, 136]. In light of this, increasing research effort has been dedicated
to the development of learning-based approaches, which usually exploit DLR to
learn robust and efficient exploration policies.

Intrinsic Exploration Rewards. The lack of ground-truth in the exploration
task forces the adoption of reinforcement learning (RL) for training exploration
methods. Even when applied to tasks different from robot exploration, RL methods
have low sample efficiency. Thus, they require designing intrinsic reward functions
that encourage visiting novel states or learning the environment dynamics. The use
of intrinsic motivation is beneficial when external task-specific rewards are sparse
or absent. Among the intrinsic rewards that motivate the exploration of novel states,
Bellemare et al. [17] introduced the notion of pseudo visitation count by using
a Context-Tree Switching (CTS) density model to extract a pseudo-count from
raw pixels and applied count-based algorithms. Similarly, Ostrovski et al. [124]
applied the autoregressive deep generative model PixelCNN [122] to estimate the
pseudo-count of the visited state. Recently, Zhang et al. [180] proposed a criterion
to mitigate common issues in count-based methods. Rewards that encourage
the learning of the environment dynamics comprehend Curiosity [129], Random
Network Distillation (RND) [29], and Disagreement [130]. Curiosity forces the
agent towards areas that maximize to prediction error for future states. RND
exploits the prediction error of the state encodings made with a fixed random
initialized network. Disagreement employs an ensemble of dynamics models
and rewards the agent for visiting states where the disagreement of the ensemble
is high. Recently, Raileanu et al. [134] proposed to jointly encourage both the
visitation of novel states and the learning of the environment dynamics. However,
their approach is developed for grid-like environments with a finite number of
states, where the visitation count can be easily employed as a discount factor. In
this Chapter, we improve Impact, a paradigm that rewards the agent proportionally
to the change in the state representation caused by its actions, and design a reward
function that can deal with photorealistic scenes with non-countable states.

Learning-based Robot Exploration Methods. In the context of robot explora-
tion and navigation tasks, the introduction of photorealistic simulators has represen-
ted a breeding ground for the development of self-supervised DRL-based visual ex-
ploration methods. Ramakrishnan et al. [136] identified four paradigms for visual
exploration: novelty-based, curiosity-based (as defined above), reconstruction-
based, and coverage-based. Each paradigm is characterized by a different reward
function used as a self-supervision signal for optimizing the exploration policy. In
particular, novelty discourages re-visiting the same areas as it is defined as the in-
verse visitation counts for each area; reconstruction favors reaching positions from
which it is easier to predict unseen observations of the environment; and coverage
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maximizes the information gathered at each time-step, being it the number of ob-
jects or landmarks reached or area seen. A coverage-based reward, considering the
area seen, is also used in the modular approach to Active SLAM presented in [32],
which combines a neural mapper module with a hierarchical navigation policy.
To enhance exploration efficiency in complex environments, Ramakrishnan et
al. [135] resorted to an extrinsic reward by introducing the occupancy anticipation
reward, which aims to maximize the agent accuracy in predicting occluded unseen
areas.
Deep Generative Models. Deep generative models are trained to approximate
high-dimensional probability distributions by means of a large set of training
samples. In recent years, literature on deep generative models followed three main
approaches: latent variable models like VAE [91], implicit generative models like
GANs [64], and exact likelihood models. Exact likelihood models can be classified
in non-autoregressive flow-based models, like RealNVP [52] and Flow++ [76],
and autoregressive models, like PixelCNN [122] and Image Transformer [127].
Non-autoregressive flow-based models consist of a sequence of invertible trans-
formation functions to compose a complex distribution modeling the training data.
Autoregressive models decompose the joint distribution of images as a product
of conditional probabilities of the single pixels. Usually, each pixel is computed
using as input only the previous predicted ones, following a raster scan order. In
this Chapter, we employ PixelCNN [122] to learn a probability distribution over
possible states and estimate a pseudo visitation count.

5.3 Proposed Method

5.3.1 Exploration Architecture
Following the current state-of-the-art architectures for navigation for embodied
agents [32, 135], the proposed method comprises three main components: a
CNN-based mapper, a pose estimator, and a hierarchical navigation policy. The
navigation policy defines the actions of the agent, the mapper builds a top-down
map of the environment to be used for navigation, and the pose estimator locates
the position of the agent on the map. Our architecture is depicted in Fig. 5.2 and
described below.
Mapper. The mapper generates a map of the free and occupied regions of the
environment discovered during the exploration. At each time step, the RGB
observation orgbt and the depth observation odt are processed to output a two-
channel V × V local map lt depicting the area in front of the agent, where each
cell describes the state of a 5×5 cm area of the environment, the channels measure
the probability of a cell being occupied and being explored, as in [32].
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Please note that this module performs anticipation-based mapping, as defined
in [135], where the predicted local map lt includes also unseen/occluded portions
of space. The local maps are aggregated and registered to the W ×W × 2 global
map Mt of the environment using the estimated pose (xt, yt, θt) from the pose
estimator. The resulting global map is used by the navigation policy for action
planning.
Pose Estimator. The pose estimator is used to predict the displacement of the
agent in consequence of an action. The considered atomic actions at of the agent
are: go forward 0.25m, turn left 10°, turn right 10°. However, the noise in the
actuation system and the possible physical interactions between the agent and the
environment could produce unexpected outcomes causing positioning errors. The
pose estimator reduces the effect of such errors by predicting the real displacement
(∆xt,∆yt,∆θt). According to [135], the input of this module consists of the
RGB-D observations (orgbt−1, o

rgb
t ) and (odt−1, o

d
t ) and the local maps (lt−1, lt).

Each modality i = 0, 1, 2 is encoded singularly to obtain three different estimates
of the displacement:

gi(et−1, et) = W1max(W2(et−1, et) + b2, 0) + b1, (5.1)

where et ∈ {orgbt , odt , lt} and W1,2 and b2 are weights matrices and bias. Eventu-
ally, the displacement estimates are aggregated with a weighted sum:

αi = softmax(MLPi([ōrt , ō
d
t , l̄t])), (5.2)

(∆xt,∆yt,∆θt) =

2∑
i=0

αi · gi, (5.3)

where MLP is a three-layered fully-connected network, (ōrt , ō
d
t , l̄t) are the inputs

encoded by a CNN, and [·, ·, ·] denotes tensor concatenation. The estimated pose
of the agent at time t is given by:

(xt, yt, θt) = (xt−1, yt−1, θt−1) + (∆xt,∆yt,∆θt). (5.4)

Note that, at the beginning of each exploration episode, the agent sets its position
to the center of its environment representation, i.e.

(x0, y0, θ0) = (0, 0, 0). (5.5)

Navigation Module. The sampling of the atomic actions of the agent relies on
the hierarchical navigation policy that is composed of the following modules: the
global policy, the planner, and the local policy.

The global policy samples a point on an augmented global map of the environ-
ment, M+

t , that represents the current global goal of the agent. The augmented
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global map M+
t is a W × W × 4 map obtained by stacking the two-channel

global map Mt from the Mapper with the one-hot representation of the agent
position (xt, yt) and the map of the visited positions, which collects the one-hot
representations of all the positions assumed by the agent from the beginning of the
exploration. Moreover, M+

t is in parallel cropped with respect to the position of
the agent and max-pooled to a spatial dimension H ×H where H < W . These
two versions of the augmented global map are concatenated to form theH×H×8
input of the global policy that is used to sample a goal in the global action space
H×H . The global policy is trained with reinforcement learning with our proposed
impact-based reward rglobalt , defined below, that encourages exploration.

The planner consists of an A* algorithm. It uses the global map to plan a path
towards the global goal and samples a local goal within 1.25m from the position
of the agent.

The local policy outputs the atomic actions to reach the local goal and is
trained to minimize the euclidean distance to the local goal, which is expressed
via the following reward:

rlocalt (st, st+1) = d(st+1)− d(st), (5.6)

where d(st) is the euclidean distance to the local goal at time step t. Note that
the output actions in our setup are discrete. These platform-agnostic actions can
be translated into signals for specific robots actuators, as we do in this Chapter.
Alternatively, based on the high-level predicted commands, continuous actions can
be predicted, e.g. in the form of linear and angular velocity commands to the robot,
by using an additional, lower-level policy, as done in [82]. The implementation of
such policy is beyond the scope of our work.

Following the hierarchical structure, the global goal is reset every η steps, and
the local goal is reset if at least one of the following conditions verifies: a new
global goal is sampled, the agent reaches the local goal, the local goal location is
discovered to be in a occupied area.

5.3.2 Impact-Driven Exploration
The exploration ability of the agent relies on the design of an appropriate reward for
the global policy. In this setting, the lack of external rewards from the environment
requires the design of a dense intrinsic reward. To the best of our knowledge, our
proposed method presents the first implementation of impact-driven exploration
in photorealistic environments. The key idea of this concept is encouraging the
agent to perform actions that have impact on the environment and the observations
retrieved from it, where the impact at time step t is measured as the l2-norm of
the encodings of two consecutive states φ(st) and φ(st+1), considering the RGB
observation orgbt as the state st. Following the formulation proposed in [134], the
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reward of the global policy for the proposed method is calculated as:

rglobalt (st, st+1) =
‖φ(st+1)− φ(st)‖2√

N(st+1)
, (5.7)

where N(st) is the visitation count of the state at time step t, i.e. how many times
the agent has observed st. The visitation count is used to drive the agent out of
regions already seen in order to avoid trajectory cycles. Note that the visitation
count is episodic, i.e.Nep(st) ≡ N(st). For simplicity, in the following we denote
the episodic visitation count as N(st).

Visitation Counts. The concept of normalizing the reward using visitation count,
as in [134], fails when the environment is continuous, since during exploration is
unlikely to visit exactly the same state more than once. In fact, even microscopic
changes in terms of translation or orientation of the agent cause shifts in the
values of the RGB observation, thus resulting in new states. Therefore, using a
photorealistic continuous environment nullifies the scaling property of the denom-
inator of the global reward in Eq. 5.7 because every state st during the exploration
episode is, most of the times, only encountered for the first time. To overcome this
limitation, we implement two types of pseudo-visitation counts N̂(st) to be used
in place of N(st), which extend the properties of visitation counts to continuous
environments: Grid and Density Model Estimation.

Grid: With this approach, we consider a virtual discretized grid of cells with fixed
size in the environment. We then assign a visitation count to each cell of the grid.
Note that, different from approaches working on procedurally-generated environ-
ments like [134], the state space of the environment we consider is continuous
also in this formulation, and depends on the pose of the agent (x, y, θ). The grid
approach operates a quantization of the agent’s positions, and that allows to cluster
observation made from similar positions. To this end, we take the global map of
the environment and divide it into cells of size G × G. The estimated pose of
the agent, regardless of its orientation θt, is used to select the cell that the agent
occupies at time t. In the Grid formulation, the visitation count of the selected cell
is used as N(st) in Eq. 5.7 and is formalized as:

N̂(st) = N̂(g(xt, yt)), (5.8)

where g(·) returns the block corresponding to the estimated position of the agent.

Density Model Estimation (DME): Let ρ be an autoregressive density model
defined over the states s ∈ S, where S is the set of all possible states. We call
ρn(s) the probability assigned by ρ to the state s after being trained on a sequence
of states s1, ..., sn, and ρ′n(s), or recoding probability [17, 124], the probability
assigned by ρ to s after being trained on s1, ..., sn, s. The prediction gain PG of
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ρ describes how much the model has improved in the prediction of s after being
trained on s itself, and is defined as

PGn(s) = log ρ′n(s)− log ρn(s). (5.9)

In this work, we employ a lightweight version of Gated PixelCNN [122] as density
model. This model is trained from scratch along with the exploration policy using
the states visited during the exploration, which are fed to PixelCNN one at a time,
as they are encountered. The weights of PixelCNN are optimized continually over
all the environments. As a consequence, the knowledge of the density model is
not specific for a particular environment or episode. To compute the input of the
PixelCNN model, we transform the RGB observation ort to grayscale and we crop
and resize it to a lower size P × P . The transformed observation is quantized to
B bins to form the final input to the model, st. The model is trained to predict
the conditional probabilities of the pixels in the transformed input image, with
each pixel depending only on the previous ones following a raster scan order. The
output has shape P ×P ×B and each of its elements represents the probability of
a pixel belonging to each of the B bins. The joint distribution of the input modeled
by PixelCNN is:

p(st) =

P 2∏
1

p(χi|χ1, ..., χi−1), (5.10)

where χi is the ith pixel of the image st. ρ is trained to fit p(st) by using the
negative log-likelihood loss.

Let n̂ be the pseudo-count total, i.e. the sum of all the visitation counts of all
states during the episode. The probability and the recoding probability of s can be
defined as:

ρn(s) =
N̂n(s)

n̂
, ρ′n(s) =

N̂n(s) + 1

n̂+ 1
. (5.11)

Note that, if ρ is learning-positive, i.e. if PGn(s) > 0 for all possible sequences
s1, ..., sn and all s ∈ S, we can approximate N̂n(s) as:

N̂n(s) =
ρn(s)(1− ρ′n(s))

ρ′n(s)− ρn(s)
≈ (ePGn(s) − 1)−1. (5.12)

To use this approximation in Eq. 5.7, we still need to address three problems:
it does not scale with the length of the episode, the density model could be not
learning-positive, and N̂n(s) should be large enough to avoid the reward becoming
too large regardless the goal selection. In this respect, to take into account the
length of the episode, we introduce a normalizing factor n−1/2, where n is the
number of steps done by the agent since the start of the episode. Moreover, to
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force ρ to be learning-positive, we clip PGn(s) to 0 when it becomes negative.
Finally, to avoid small values at the denominator of rglobalt (Eq. 5.7), we introduce
a lower bound of 1 to the pseudo visitation count. The resulting definition of
N̂n(s) in the Density Model Estimation formulation is:

P̃Gn = c · n−1/2 · (PGn(s))+, (5.13)

N̂n(s) = max
{(
eP̃Gn(s) − 1

)−1
, 1
}
, (5.14)

where c is a term used to scale the prediction gain. It is worth noting that, unlike
the Grid approach that can be applied only when st is representable as the robot
location, the Density Model Estimation can be adapted to a wider range of tasks,
including settings where the agent alters the environment.

5.4 Experimental Setup

Datasets. For comparison with state-of-the-art DRL-based methods for embodied
exploration, we employ the photorealistic simulated 3D environments contained
in the Gibson dataset [175] and the MP3D dataset [31]. Both these datasets
consist of indoor environments where different exploration episodes take place. In
each episode, the robot starts exploring from a different point in the environment.
Environments used during training do not appear in the validation/test split of
these datasets. Gibson contains 106 scans of different indoor locations, for a total
of around 5M exploration episodes (14 locations are used in 994 episodes for test
in the so-called Gibson Val split). MP3D consists of 90 scans of large indoor
environments (11 of those are used in 495 episodes for the validation split and 18
in 1008 episodes for the test split).
Evaluation Protocol. We train our models on the Gibson train split. Then, we
perform model selection basing on the results obtained on Gibson Val. We then
employ the MP3D validation and test splits to benchmark the generalization
abilities of the agents. To evaluate exploration agents, we employ the following
metrics. IoU between the reconstructed map and the ground-truth map of the
environment: here we consider two different classes for every pixel in the map
(free or occupied). Similarly, the map accuracy (Acc, expressed in m2) is the
portion of the map that has been correctly mapped by the agent. The area seen
(AS, in m2) is the total area of the environment observed by the agent. For both
the IoU and the area seen, we also present the results relative to the two different
classes: free space and occupied space respectively (FIoU, OIoU, FAS, OAS).
Finally, we report the mean positioning error achieved by the agent at the end
of the episode. A larger translation error (TE, expressed in m) or angular error
(AE, in degrees) indicates that the agent struggles to keep a correct estimate of
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its position throughout the episode. For all the metrics, we consider episodes of
length T = 500 and T = 1000 steps.

For our comparisons, we consider five baselines trained with different rewards.
Curiosity employs a surprisal-based intrinsic reward as defined in [129]. Coverage
and Anticipation are trained with the corresponding coverage-based and accuracy-
based rewards defined in [135]. For completeness, we include two count-based
baselines, obtained using the reward defined in Eq. 5.7, but ignoring the contribu-
tion of impact (i.e. setting the numerator to a constant value of 1). These are Count
(Grid) and Count (DME). All the baselines share the same overall architecture and
training setup of our main models.

Implementation Details. The experiments are performed using the Habitat Sim-
ulator [145] with observations of the agent set to be 128 × 128 RGB-D images
and episode length during training set to T = 500. Each model is trained with
the training split of the Gibson dataset [175] with 40 environments in parallel for
≈ 5M frames.

Navigation Module: The reinforcement learning algorithm used to train the global
and local policies is PPO [147] with Adam optimizer and a learning rate of
2.5× 10−4. The global goal is reset every η = 25 time steps and the global action
space hyperparameter H is 240. The local policy is updated every η steps and the
global policy is updated every 20η steps.

Mapper and Pose Estimator: These models are trained with a learning rate of
10−3 with Adam optimizer, the local map size is set with V = 101 while the
global map size is W = 961 for episodes in the Gibson dataset and W = 2001 in
the MP3D dataset. Both models are updated every 4η time steps, where η is the
reset interval of the global policy.

Density Model: The model used for density estimation is a lightweight version of
Gated PixelCNN [122] consisting of a 7× 7 masked convolution followed by two
residual blocks with 1× 1 masked convolutions with 16 output channels, a 1× 1
masked convolutional layer with 16 output channels, and a final 1 × 1 masked
convolution that returns the output logits with shape P × P ×B, where B is the
number of bins used to quantize the model input. We set P = 42 for the resolution
of the input and the output of the density model, and c = 0.1 for the prediction
gain scale factor.

5.5 Experimental Results

Exploration Results. As a first step, we perform model selection using the results
on the Gibson Val split (Table 5.1). Our agents have different hyperparameters that
depend on the implementation for the pseudo-counts. When our model employs
grid-based pseudo-counts, it is important to determine the dimension of a single
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Gibson Val (T = 500)

Model IoU ↑ FIoU ↑ OIoU ↑ Acc ↑ AS ↑ FAS ↑ OAS ↑ TE ↓ AE ↓

Grid
G = 2 0.726 0.721 0.730 51.41 61.88 34.17 27.71 0.240 4.450
G = 4 0.796 0.792 0.801 54.34 61.17 33.74 27.42 0.079 1.055
G = 5 0.806 0.801 0.813 55.21 62.17 34.31 27.87 0.077 0.881
G = 10 0.789 0.784 0.794 54.26 61.67 34.06 27.61 0.111 1.434

DME
B = 64 0.773 0.768 0.778 53.58 61.00 33.79 27.21 0.131 2.501
B = 128 0.796 0.794 0.799 54.73 62.07 34.27 27.79 0.095 1.184
B = 256 0.685 0.676 0.695 49.27 61.40 33.95 27.45 0.311 6.817

Table 5.1: Results for our model selection on Gibson Val for T = 500.

cell in this grid-based structure. In our experiments, we test the effects of using
G×G squared cells, with G ∈ {2, 4, 5, 10}. The best results are obtained with
G = 5, with small differences among the various setups. When using pseudo-
counts based on a density model, the most relevant hyperparameters depend on the
particular model employed as density estimator. In our case, we need to determine
the number of bins B for PixelCNN, with B ∈ {64, 128, 256}. We find out that
the best results are achieved with B = 128.

In Table 5.2, we compare the Impact (Grid) and Impact (DME) agents with the
baseline agents previously described on the considered datasets. For each model
and each split, we test 5 different random seeds and report the mean result for each
metric. For the sake of readability, we do not report the standard deviations for the
different runs, which we quantify in around 1.2% of the mean value reported.

As it can be seen, results achieved by the two proposed impact-based agents
are constantly better than those obtained by the competitors, both for T = 500 and
T = 1000. It is worth noting that our intrinsic impact-based reward outperforms
strong extrinsic rewards that exploit information computed using the ground-truth
layout of the environment. Moreover, the different implementations chosen for
the pseudo-counts affect final performance, with Impact (DME) bringing the best
results in terms of AS and Impact (Grid) in terms of IoU metrics. From the results
it also emerges that, although the proposed implementations for the pseudo-count
in Eq. 5.7 lead to comparable results in small environments as those contained
in Gibson and MP3D Val, the advantage of using DME is more evident in large,
complex environments as those in MP3D Test.

In Fig. 5.3, we report some qualitative results displaying the trajectories and
the area seen by different agents in the same episode. Also from a qualitative
point of view, the benefit given by the proposed reward in terms of exploration
trajectories and explored areas is easy to identify.
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Figure 5.3: Qualitative results. For each model, we report three exploration
episodes on Gibson and MP3D validation sets for T = 500.

PointGoal Navigation. One of the main advantages of training deep modular
agents for embodied exploration is that they easily adapt to perform downstream
tasks, such as PointGoal navigation [145]. Recent literature [32, 135] has dis-
covered that hierarchical agents trained for exploration are competitive with state-
of-the-art architecture tailored for PointGoal navigation and trained with strong
supervision for 2.5 billion frames [171]. Additionally, the training time and data
required to learn the policy is much more limited (2 to 3 orders of magnitude
smaller). In Table 5.3, we report the results obtained using two different set-
tings. The noise-free pose sensor setting is the standard benchmark for PointGoal
navigation in Habitat [145]. In the noisy pose sensor setting, instead, the pose
sensor readings are noisy, and thus the agent position must be estimated as the
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Noise-free Pose Sensor Noisy Pose Sensor

Model D2G ↓ SR ↑ SPL ↑ sSPL ↑ D2G ↓ SR ↑ SPL ↑ sSPL ↑

OccAnt [135] - 0.930 0.800 - - - - -
ANS [32] - 0.950 0.846 - - - - -

Curiosity 0.238 0.970 0.914 0.899 0.302 0.861 0.822 0.890
Coverage 0.240 0.970 0.909 0.895 0.288 0.827 0.788 0.886
Anticipation 0.285 0.965 0.906 0.892 0.309 0.885 0.835 0.884

Impact (Grid) 0.252 0.969 0.908 0.894 0.226 0.923 0.867 0.893
Impact (DME) 0.264 0.967 0.907 0.895 0.276 0.913 0.859 0.893

DD-PPO [171] - 0.967 0.922 - - - - -

Table 5.3: PointGoal Navigation results on the Validation subset of the Gibson
dataset. Underlined denotes second best.

episode progresses. We consider four main metrics: the average distance to the
goal achieved by the agent (D2G) and three success-related metrics. The success
rate (SR) is the fraction of episodes terminated within 0.2 meters from the goal,
while the SPL and SoftSPL (sSPL) weigh the distance from the goal with the
length of the path taken by the agent in order to penalize inefficient navigation.
As it can be seen, the two proposed agents outperform the main competitors from
the literature: OccAnt [135] and Active Neural Slam (ANS) [32]. For both the
competitors, we report the results achieved by the RGB-D agents, as reported in
the papers.

When comparing with our baselines in the noise-free setting, the overall
architecture design allows for high-performance results, as the reward influences
map estimation only marginally. In fact, in this setting, the global policy and the
pose estimation module are not used, as the global goal coincides with the episode
goal coordinates, and the agent receives oracle position information. Thus, good
results mainly depend on the effectiveness of the mapping module. Instead, in
the noisy setting, the effectiveness of the reward used during training influences
navigation performance more significantly. In this case, better numerical results
originate from a better ability to estimate the precise pose of the agent during
the episode. For completeness, we also compare with the results achieved by
DD-PPO [171], a method trained with reinforcement learning for the PointGoal
task on 2.5 billion frames, 500 times more than the frames used to train our agents.

Real-world Deployment. As agents trained in realistic indoor environments using
the Habitat simulator are adaptable to real-world deployment [23, 85], we also
deploy the proposed approach on a LoCoBot robot [106]. We employ the PyRobot
interface [118] to deploy code and trained models on the robot. To enable the
adaptation to the real-world environment, there are some aspects that must be
taken into account during training. As a first step, we adjust the simulation in
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order to reproduce realistic actuation and sensor noise. To that end, we adopt the
noise model proposed in [32] based on Gaussian Mixture Models fitting real-world
noise data acquired from a LoCoBot. Additionally, we modify the parameters of
the RGB-D sensor used in simulation to match those of the RealSense camera
mounted on the robot. Specifically, we change the camera resolution and field
of view, the range of depth information, and the camera height. Finally, it is
imperative to prevent the agent from learning simulation-specific shortcuts and
tricks. For instance, the agent may learn to slide along the walls due to imperfect
dynamics in simulation [85]. To prevent the learning of such dynamics, we employ
the bump sensor provided by Habitat and block the agent whenever it is in contact
with an obstacle. When deployed in the real world, our agent is able to explore the
environment without getting stuck or bumping into obstacles. Further details on
sim-to-real adaptation and real-world deployment, as well as experimental results,
can be found in Chapter 8.

5.6 Conclusion
In this Chapter, we presented an impact-driven approach for robotic exploration in
indoor environments. Different from previous research that considered a setting
with procedurally-generated environments with a finite number of possible states,
we tackle a problem where the number of possible states is non-numerable. To
deal with this scenario, we exploit a deep neural density model to compute a
running pseudo-count of past states and use it to regularize the impact-based
reward signal. The resulting intrinsic reward allows to efficiently train an agent for
exploration even in absence of an extrinsic reward. Furthermore, extrinsic rewards
and our proposed reward can be jointly used to improve training efficiency in
reinforcement learning. The proposed agent stands out from the recent literature
on embodied exploration in photorealistic environments. Additionally, we showed
that the trained models can be deployed in the real world.





Chapter 6
Vision-and-Language Navigation
with Dynamic Convolution

In Vision-and-Language Navigation (VLN), an embodied agent needs to reach
a target destination with the only guidance of a natural language instruction. To
explore the environment and progress towards the target location, the agent must
perform a series of low-level actions, such as rotate, before stepping ahead. In
this Chapter, we propose to exploit dynamic convolutional filters to encode the
visual information and the lingual description in an efficient way. Differently from
some previous works that abstract from the agent perspective and use high-level
navigation spaces, we design a policy which decodes the information provided by
dynamic convolution into a series of low-level, agent friendly actions. Results show
that our model exploiting dynamic filters performs better than other architectures
with traditional convolution, being the new state-of-the-art for embodied VLN in
the low-level action space. Additionally, we attempt to categorize recent work on
VLN depending on their architectural choices and distinguish two main groups:
we call them low-level actions and high-level actions models. To the best of our
knowledge, we are the first to propose this analysis and categorization for VLN.

This Chapter is related to publication [2], as reported in the List of Publications.

77
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6.1 Introduction
Imagine finding yourself in a large conference hall, with an assistant giving you
instructions on how to reach the room for your talk. You are likely to hear
something like: turn right at the end of the corridor, head upstairs and reach the
third floor: your room is immediately on the left. Succeeding in the task of finding
your target location is rather nontrivial because of the length of the instruction
and its sequential nature: the flow of actions must be coordinated with a series of
visual examinations – like recognizing the end of the corridor or the floor number.
Furthermore, navigation complexity dramatically increases if the environment is
unknown, and no prior knowledge, such as a map, is available.

Vision-and-Language Navigation (VLN) [6] is a challenging task that demands
an embodied agent to reach a target location by navigating unseen environments,
with a natural language instruction as its only clue. Similarly to the previous
example, the agent must assess different sub-tasks to succeed. First, a fine-grained
comprehension of the given instruction is needed. Then, the agent must be able to
map parts of the description into the visual perception. For example, walking past
the piano requires to find and focus on the piano, rather than considering other
objects in the scene. Finally, the agent needs to understand when the navigation
has been completed and send a stop signal.

VLN has been first proposed by Anderson et al. [6], with the aim of connecting
the research efforts on vision-and-language understanding [5, 9, 46, 47, 65, 166,
177] with the raising area of embodied AI [3, 44, 45, 175]. This is particularly
challenging, as embodied agents must deal with a series of issues that do not belong
to traditional vision and language tasks [3], like contextual decision-making and
planning. Recent works on VLN [56, 109, 110, 159] integrate the agent with a
simplified action space in which it “only needs to make high-level decisions as
to which navigable direction to go next” [56]. In this scenario, the agent does
not need to infer the sequence of actions to progress in the environment (e.g.,
turn right 30 degrees, then move forward) but it exploits a navigation graph to
teleport itself to an adjacent location. The adoption of this high-level action space
allowed for a significant boost in success rates, while partly depriving the task
of its embodied nature, and leaving space for little more than pure visual and
language understanding. We claim that this type of approach is inconvenient, as it
strongly relies on prior knowledge on the environment. Depending on information
such as the position and the availability of navigable directions, it reduces the task
to a pure graph navigation. Moreover, it ignores the active role of the agent, as it
only perceives the surrounding scene and selects the next target viewpoint from
a limited set. We claim instead that the agent should be the principal component
of embodied VLN [3]. Consequently, the output space should match with the
low-level set of movements that the agent can perform.

In this Chapter, we propose a novel architecture for embodied VLN which
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Take a right, going past the kitchen into the hallway Walk into the sitting area and stop before the couch

Figure 6.1: Given a fixed visual observation, dynamic convolutional filters can
extract a subset of specific features depending on the leading instruction. In this
example, the agent focuses on two different parts of the same environment (best
viewed in color).

employs dynamic convolutional filters [101] to identify the next target direction,
without getting any information about the navigable viewpoints from the simulator.
Convolutional filters are produced via an attention mechanism which follows the
given instruction, and are in turn used to attend relevant directions of the scene
towards which the agent should move. We then rely on a policy network to predict
the sequence of low-level actions.

Dynamic convolutional filters, proposed by Li et al. [101], were first conceived
to identify and track people by a natural language specification. They were then
successfully employed in other computer vision tasks, such as actor and action
video segmentation from a sentence [58]. Nonetheless, these works considered
mainly short descriptions, while we deal with complex sentences and long-term
dependencies. We generate dynamic filters according to the given instruction, to
extract only the relevant information from the visual context. In this way, the
same observation can lead to different feature maps, depending on the part of the
instruction that the agents must complete (Fig. 6.1).

The proposed method is competitive with prior work that performs high-
level navigation exploiting information about the reachable viewpoints (i.e. the
navigation graph). Additionally, our approach is fully compliant with recent
recommendations for embodied navigation [3]. When compared with models that
are compliant with the VLN setup, we overcome the current state of the art by a
significant margin. To sum up, our contributions are as follows:

• We propose a new encoder-decoder architecture for embodied VLN, which
for the first time employs dynamic convolutional filters to attend relevant
regions of the visual scene and control the actions of the agent.

• We show, through extensive experimental evaluations, that in a mutable
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environment with shifting goals dynamic convolutional filters can provide
better performance than traditional convolutional filters. Results show that
our proposed architecture overcomes the state of the art on the embodied
VLN task.

• As a complementary contribution, we categorize previous work on VLN
basing on their level of abstraction and generalizability. We distinguish a
group of works that strongly relies on the simulating platform and on the
navigation graph, we call them high-level actions models. A second group,
named low-level actions models, includes methods that are more agnostic
on the underlying implementation and that directly predicts agent actions.
With this categorization, we hope to encourage further research to consider
low-level and high-level action spaces as distinct fields of application when
dealing with VLN.

6.2 Related Work
There is a wide area of research devoted to bridge natural language processing
and image understanding. Image captioning [5, 166, 177], visual question answer-
ing [9, 65], and visual dialog [46, 47] are examples of active research areas in
this field. At the same time, visual navigation [71, 149, 175] and goal-oriented
instruction following [35, 57, 133] represent an important part of current work on
embodied AI [44, 45, 145, 179]. In this context, Vision-and-Language Navigation
(VLN) [6] constitutes a peculiar challenge, as it enriches traditional navigation
with a set of visually rich environments and detailed instructions. Additionally, all
the scenes are photo-realistic and unknown to the agent beforehand.

Low-level Vision-and-Language Navigation. In low-level VLN, the agent takes
move in the environment by using actions such as rotate, tilt up, and step ahead.
So far, only a small portion of literature has taken this direction. Anderson et
al. [6] build on a traditional sequence-to-sequence architecture, while Wang et
al. [169] employ a mixture of model-free and model-based reinforcement learning.
In these works the agent perceives only the first person view of the surrounding
environment. In this Chapter we propose a sequence-to-sequence model which
exploits dynamic convolution to make the visual representation more compact
and informative for the agent. In the proposed architecture, the agent perceives
the 360° image of the surroundings. However, this generalization does not hurt
adaptability to real-world scenarios.

High-level Vision-and-Language Navigation. The idea of a high-level action
space was first proposed by Fried et al. [56], and immediately allowed for an
important boost in terms of performance. Following work includes visual and
textual co-grounding with progress inference [109] and backtracking with learned
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heuristics [110]. Other methods implement a speaker module which strengthens
consistency between the chosen path and the instruction [56, 168]. Wang et
al. [168] propose a reinforced cross-modal matching critic, together with a new
self-supervised imitation learning setting. Tan et al. [159] devise a novel envir-
onmental dropout method to improve traditional features dropout for VLN. Ke et
al. [88] propose a FAST navigation agent which improves the performance both
over greedy decoding of the next action and over beam search. Very recently, Zhu
et al. [184] exploit auxiliary reasoning tasks and the rich semantic given by the
navigation in their model, while Hao et al. [72] investigate an efficient pre-training
for generic VLN agents. While pragmatic approaches with high-level reasoning
allow for a boost in performance, architectures built for high-level VLN rely
heavily on the information coming from the underlying simulating platform. Even
when the environment is supposed to be unknown (e.g. during test) the agent can
get a priori knowledge from the connectivity graph and exploit this information
for a more efficient navigation.

6.3 Proposed Method
We propose an encoder-decoder architecture for Vision-and-Language Navigation.
Our work employs dynamic convolutional filters conditioned on the current in-
struction to extract the relevant piece of information from the visual perception,
which is in turn used to feed a policy network which controls the actions performed
by the agent. The output of our model is a probability distribution over a low-level
action space A = {ai}6i=1, which comprises the following actions: turn 30° left,
turn 30° right, raise elevation, lower elevation, go ahead, end episode. The output
probability distribution at a given step, pt = P (at|X,Vt, ht−1), depends on a
natural language instructionX , the current visual observation Vt, and on the policy
hidden state at time step t− 1. Our architecture is depicted in Fig. 6.2.

6.3.1 Encoder
To represent the two inputs of the architecture, i.e.the instruction and the visual
input at time t, we devise an instruction and a visual encoder. The instruction
encoder provides a representation of the navigation instructions that is employed
to guide the whole navigation episode. On the other hand, the visual encoding
module operates at every single step, building a representation of the current
observation which depends on the agent position.
Instruction Encoding. The given natural language instruction is split into single
words via tokenization, and stop words are filtered out to obtain a shorter descrip-
tion. Differently from previous works that train word embeddings from scratch,
we rely on word embeddings obtained from a large corpus of documents. Beside
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providing semantic information which could not be learned purely from VLN
instructions, the use of learned word embedding also let us handle words that are
not present in the training set (see Sec. 6.4.2 for a discussion). Given an instruction
with length N , we denote its embeddings sequence as L = (l1, l2, ..., lN ), where
li indicates the embedding for the i-th word. Then, we adopt a Long Short-Term
Memory (LSTM) network to provide a timewise contextual representation of the
instruction:

X = (x1, x2, ..., xN ) = LSTM(L), (6.1)

where each xi denotes the hidden state of the LSTM at time i, thus leading to a
final representation with shape (N, d), where d is the size of the LSTM hidden
state.

Visual Features Encoding. As visual input, we employ the panoramic 360° view
of the agent, and discretize the resulting equirectangular image in a 12× 3 grid,
consisting of three different elevation levels and 30° heading shift from each
other. Each location of the grid is then encoded via the 2048-dimensional features
extracted from a ResNet-152 [73] pre-trained on ImageNet [49]. We also append
to each cell vector a set of coordinates relative to the current agent heading and
elevation:

coordt = (sinφt, cosφt, sin θt) , (6.2)

where φt ∈ (−π, π] and θt ∈ [−π2 ,
π
2 ] are the heading and elevation angles

w.r.t. the agent position. By adding coordt to the image feature map, we encode
information related to concepts such as right, left, above, below into the agent
observation.

6.3.2 Decoder
Given the instruction embedding X for the whole episode, we use an attention
mechanism to select the next part of the sentence that the agent has to fulfill. We
denote this encoded piece of instruction as st. We detail our attentive module in
the next Section.

Dynamic Convolutional Filters. Dynamic filters are different from traditional,
fixed filters typically used in CNN, as they depend on an input rather than being
purely learnable parameters. In our case, we can think about them as specialized
feature extractors reflecting the semantics of the natural language specification.
For example, starting from an instruction like head towards the red chair our
model can learn specific filters to focus on concepts such as red and chair. In this
way, our model can rely on a large ensemble of specialized kernels and apply only
the most suitable ones, depending on the current goal. Naturally, this approach is
more efficient and flexible than learning a fixed set of filters for all the navigation
steps. We use the representation of the current piece of instruction st to generate
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multiple 1×1 dynamic convolutional kernels, according to the following equation:

ft = `2[tanh(Wfst + bf )], (6.3)

where `2[·] indicates L2 normalization, and ft is a tensor of filters reshaped to
have the same number of channels as the image feature map. We then perform the
dynamic convolution over the image features It, thus obtaining a response map
for the current timestep as follows:

Dt = ft ∗ It. (6.4)

As the aforementioned operation is equivalent to a dot product, we can conceive
the dynamic convolution as a specialized form of dot-product attention, in which
It acts as key and the filters in ft act as time-varying queries. Following this
interpretation, we rescale Dt by

√
df , where df is the dynamic filter size [164] to

maintain dot products smaller in magnitude.
Action Selection. We use the response maps dynamically generated as input for
the policy network. We implement it with an LSTM whose hidden state at time
step t is employed to obtain the action scores. Formally:

ht = LSTM([D̃t, at−1], ht−1), pt = softmax(Waht + ba), (6.5)

where [·, ·] indicates concatenation, at−1 is the one-hot encoding of the action
performed at the previous timestep, and D̃t is the flattened tensor obtained from
Dt. To select the next action at, we sample from a multinomial distribution
parametrized with the output probability distribution during training, and select
at = arg max pt during the test. In line with previous work, we find out that
sampling during the training phase encourages exploration and improves overall
performances.

Note that, as previously stated, we do not employ a high-level action space,
where the agent selects the next viewpoint in the image feature map, but instead
make the agent responsible of learning the sequence of low-level actions needed to
perform the navigation. The agent can additionally send a specific stop signal when
it considers the goal reached, as suggested by recent standardization attempts [3].

6.3.3 Encoder-Decoder Attention
The navigation instructions are very complex, as they involve not only different
actions but also temporal dependencies between them. Moreover, their high aver-
age length represents an additional challenge for traditional embedding methods.
For these reasons, we enrich our architecture with a mechanism to attend different
locations of the sentence representation, as the navigation moves towards the goal.
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In line with previous work on VLN [6, 56], we employ an attention mechanism
to identify the most relevant parts of the navigation instruction. We employ the
hidden state of our policy LSTM to get the information about our progress in
the navigation episode and extract a time-varying query qt = Wqht−1 + bq. We
then project our sentence embedding into a lower dimensional space to obtain key
vectors, and perform a scaled dot-product attention [164] among them:

αt =
qtK

T

√
datt

, K = WkX + bk. (6.6)

After a softmax layer, we obtain the current instruction embedding st by matrix
multiplication between the initial sentence embedding and the softmax scores:

st = softmax(αt)X. (6.7)

At each timestep of the navigation process st is obtained by attending the instruc-
tion embedding at different locations. The same vector is in turn used to obtain a
time-varying query for attending spatial locations in the visual input.

6.3.4 Training

Our training sample consists of a batch of navigation instructions and the corres-
ponding ground truth paths coming from the R2R (Room-to-Room) dataset [6]
(described in Sec. 6.4). The path denotes a list of discretized viewpoints that the
agent has to traverse to progress towards the goal. The agent spawns in the first
viewpoint, and its goal is to reach the last viewpoint in the ground truth list. At
each step, the simulator is responsible for providing the next ground truth action
in the low-level action space that enables the agent to progress. Specifically, the
ground truth action is computed by comparing the coordinates of the next target
node in the navigation graph with the agent position and orientation. At each time
step t, we minimize the following objective function:

L = −
∑
t

yt log pt, (6.8)

where pt is the output of our network, and yt is the ground truth low-level action
provided by the simulator at time step t. We train our network with a batch size
of 128 and use Adam optimizer [90] with a learning rate of 10−3. We adopt early
stopping to terminate the training if the mean success rate does not improve for 10
epochs.
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Validation-Seen Validation-Unseen

Method NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑

Random agent 9.45 15.9 21.4 - 9.23 16.3 22.0 -

Traditional convolution [6] 6.01 38.6 52.9 - 7.81 21.8 28.4 -
Ours w/o encoder-decoder attention 5.86 41.3 51.2 36.3 7.72 22.0 29.3 19.3
Ours w/o pre-trained embedding 5.62 42.0 54.0 36.3 7.32 25.8 33.3 22.1

Ours w/ dynamic filters 4.68 53.1 66.1 46.0 6.65 31.6 43.6 26.8

Table 6.1: Ablation study for our architecture on the validation sets of R2R. The
full model works better than when attention is removed or when conventional
filters are used.

6.4 Experiments and Results

6.4.1 Experimental Settings

For our experiments, we employ the R2R (Room-to-Room) dataset [6]. This
challenging benchmark builds upon Matterport3D dataset of spaces [31] and
contains 7, 189 different navigation paths in 90 different scenes. For each route, the
dataset provides 3 natural language instructions, for a total of 21,567 instructions
with an average length of 29 words. The R2R dataset is split into 4 partitions:
training, validation on seen environments, validation on unseen scenes, and test on
unseen environments.

Evaluation Metrics. We adopt the same evaluation metrics employed by previous
work on the R2R dataset: navigation error (NE), oracle success rate (OSR), success
rate (SR), and success rate weighted by path length (SPL). NE is the mean distance
in meters between the final position and the goal. SR is fraction of episodes
terminated within no more than 3 meters from the goal position. OSR is the
success rate that the agent would have achieved if it received an oracle stop signal
in the closest point to the goal along its navigation. SPL is the success rate
weighted by normalized inverse path length and penalizes overlong navigations.

Implementation Details. For each LSTM, we set the hidden size to 512. Word
embeddings are obtained with GloVe [131]. In our visual encoder, we apply a
bottleneck layer to reduce the dimension of the image feature map to 512. We
generate dynamic filters with 512 channels using a linear layer with dropout [152]
(p = 0.5). In our attention module, q and K have 128 channels and we apply a
ReLU non-linearity after the linear transformation. For our action selection, we
apply dropout with p = 0.5 to the policy hidden state before feeding it to the linear
layer.
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6.4.2 Ablation Study

In our ablation study, we test the influence of our implementation choices on VLN.
As a first step, we discuss the impact of dynamic convolution by comparing our
model with a similar seq2seq architecture that employs fixed convolutional filters.
We then detail the importance of using an attention mechanism to extract the
current piece of instruction to be fulfilled. Finally, we compare the results obtained
using a pre-trained word embedding instead of learning the word representation
from scratch. Results are reported in Table 6.1.

Static Filters Vs. Dynamic Convolution. As results show, dynamic convolu-
tional filters surpass traditional fixed filters for VLN. This because they can easily
adapt to new instructions and reflect the variability of the task. When compared to
a baseline model that employs traditional convolution [6], our method performs
14.5% and 9.8% better, in terms of success rate, on the val-seen and val-unseen
splits respectively.

Fixed Instruction Representation Vs. Attention. The navigation instructions
are very complex and rich. When removing the attention module from our ar-
chitecture, we keep the last hidden state hN as instruction representation for the
whole episode. Even with this limitation, dynamic filters achieve better results
than static convolution, as the success rate is higher for both of the validation splits.
Our attention module further increases the success rate by 11.8% and 9.6%.

Word Embedding from Scratch Vs. Pre-trained Embedding. Learning a mean-
ingful word embedding is nontrivial and requires a large corpus of natural language
descriptions. For this reason, we adopt a pre-trained word embedding to encode
single words in our instructions. We then run the same model while trying to learn
the word embedding from scratch. We discover that a pre-trained word embedding
significantly eases VLN. Our model with GloVe [131] obtains 11.1% and 5.8%
more on the val-seen and val-unseen splits respectively, in terms of success rate.

6.4.3 Multi-headed Dynamic Convolution

In this experiment, we test the impact of using a different number of dynamically-
generated filters. We test our architecture when using 1, 2, 4, 8, and 16 dynamic
filters. We find out that the best setup corresponds to the use of 4 different
convolutional filters. Results in Fig. 6.3 and Table 6.2 show that the success
rate and the SPL increase linearly with the number of dynamic kernels for a
small number of filters, reaching a maximum at 4. The metrics then decrease
when adding new parameters to the network. This suggests that a low number
of dynamic filters can represent a wide variety of natural language specifications.
However, as the number of dynamic filters increase, the representation provided
by the convolution becomes less efficient.



88 CHAPTER 6. VLN WITH DYNAMIC CONVOLUTION

1 2 4 8 16
# of dynamic filters

20

25

30

35

40

45

50

%

OSR
SR
SPL

Figure 6.3: Comparison of success-based metrics using different numbers of
dynamic filters on the validation-unseen set of R2R.

Validation-Unseen

# NE ↓ SR ↑ OSR ↑ SPL ↑

1 6.79 29.7 39.9 25.8
2 6.77 30.3 40.5 26.2
4 6.65 31.6 43.6 26.8
8 7.19 28.7 39.1 24.5
16 7.03 27.8 37.9 23.2

Table 6.2: Numerical comparison of the results on the main metrics using different
numbers of dynamic filters. The best results for all the metrics are obtained using
four different dynamic filters.

6.4.4 Comparison with the State-of-the-art

Finally, we compare our architecture with the state-of-the-art methods for VLN.
Results are reported in Table 6.3. We distinguish two main categories of models,
depending on their output space: the first, to which our approach belongs, predicts
the next atomic action (e.g. turn right, go ahead). We call architectures in this
category low-level actions methods. The second, instead, searches in the visual
space to match the current instruction with the most suitable navigable viewpoint.
In these models, atomic actions are not considered, as the agent displacements
are done with a teleport system, using the next viewpoint identifier as target des-
tination. Hence, we refer to these works as high-level actions methods. While
the latter achieve better results, they make strong assumptions on the underlying
simulating platform and on the navigation graph. Our method, exploiting dynamic
convolutional filters and predicting atomic actions, outperforms comparable archi-
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Validation-Seen Validation-Unseen Test (Unseen)

Low-level Methods NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑

Random 9.45 0.16 0.21 - 9.23 0.16 0.22 - 9.77 0.13 0.18 0.12
Student-forcing [6] 6.01 0.39 0.53 - 7.81 0.22 0.28 - 7.85 0.20 0.27 0.18
RPA [169] 5.56 0.43 0.53 - 7.65 0.25 0.32 - 7.53 0.25 0.33 0.23

Ours 4.68 0.53 0.66 0.46 6.65 0.32 0.44 0.27 7.14 0.31 0.42 0.27
Ours w/ data aug. 3.96 0.58 0.73 0.51 6.52 0.34 0.43 0.29 6.55 0.35 0.45 0.31

Validation-Seen Validation-Unseen Test (Unseen)

High-level Methods NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑

Speaker-Follower [56] 3.36 0.66 0.74 - 6.62 0.36 0.45 - 6.62 0.35 0.44 0.28
Self-Monitoring [109] 3.22 0.67 0.78 0.58 5.52 0.45 0.56 0.32 5.99 0.43 0.55 0.32
Regretful [110] 3.23 0.69 0.77 0.63 5.32 0.50 0.59 0.41 5.69 0.48 0.56 0.40
RCM [168] 3.37 0.67 0.77 - 5.88 0.43 0.52 - 6.12 0.43 0.50 0.38

Table 6.3: Comparison with state-of-art methods for VLN. The results for high-
level models include data augmentation with synthetic data provided by [56], as
in our final setup. Our method outperforms comparable models by a large margin.

tectures and achieves state of the art results for low-level actions VLN. Our final
implementation takes advantage of the synthetic data provided by Fried et al. [56]
and overcomes comparable methods [6, 169] by 15% and 10% success rate points
on the R2R test set. Additionally, we note that our method is competitive with
some high-level actions models, especially in terms of SPL. When considering the
test set, we notice in fact that our model outperforms Speaker-Follower [56] by
3%, while performing only 1% worse than [109].

Low-level Action Space or High-level Navigation Space. While previous work
on VLN never considered this important difference, we claim that it is imperative
to categorize navigation architectures depending on their output space. In our
opinion, ignoring this aspect would lead to inappropriate comparisons and wrong
conclusions. Considering the results in Table 6.3, we separate the two classes of
work and highlight the best results for each category.

Please note that the random baseline was initially provided by [6] and belongs
to low-level actions architectures (a random high-level actions agent was never
provided by previous work). We immediately notice that, with this new categor-
ization, intra-class results have less variance and are much more aligned to each
other. We believe that future work on VLN should consider this new taxonomy in
order to provide meaningful and fair comparisons.

6.4.5 Qualitative Results

Fig. 6.4 shows two navigation episodes from the R2R validation set. We display
the predicted action in a green box on the bottom-right corner of each image.
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Legend: left right forward end episode

Instruction: From bathroom, enter bedroom and walk straight
across down two steps, wait at loungers.

Instruction: Walk past the fireplace and to the left.
Stop in the entryway of the kitchen.

Figure 6.4: Qualitative results from the R2R validation set. Each episode is detailed
by eight pictures, representing the current position of the agent and containing the
next predicted action (from left to right, top to bottom). To make the visualization
more readable, we do not display the 360° panoramic images.

Both examples are successful. As we can see, our agent is able to identify and
ground concepts such as loungers, fireplace and kitchen. These remarkable results
demonstrate the flexibility and the efficacy of dynamic filters for VLN.
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6.5 Conclusion
In this Chapter, we propose dynamic convolution for embodied Vision-and-
Language Navigation. Instead of relying on a high-level action space, where
the agent is teleported from one viewpoint to the other, we predict a series of
action in an agent friendly action space. Basing on this substantial difference, we
propose a new categorization based on the model output space. We then separate
previous VLN architectures into low-level actions and high-level actions methods.
We claim that comparisons made considering this new taxonomy are more fair and
reasonable than previous analysis. Our method with dynamic convolutional filters
achieves state-of-the-art results for the low-level actions category, and it is com-
petitive with high-level actions architectures that rely on much more information
and have a higher level of abstraction during the navigation episode. We hope this
work encourages further research on low-level VLN, and in general we consider
this a step towards the use of more realistic action spaces for this task. While our
experiments show promising results in this setting, much work remains to inspect
the possible connections between low-level and high-level Vision-and-Language
Navigation.





Chapter 7
Perceive, Transform, and Act: VLN
with Transformers

Vision-and-Language Navigation (VLN) is a challenging task in which an agent
needs to follow a language-specified path to reach a target destination. Getting
to the goal gets even harder as the actions available to the agent get simpler and
move towards low-level, atomic interactions with the environment. This setting
takes the name of low-level VLN. In this Chapter, we strive for the creation of
an agent able to tackle three key issues: multi-modality, long-term dependencies,
and adaptability towards different locomotive settings. To that end, we devise
“Perceive, Transform, and Act” (PTA): a fully-attentive VLN architecture that
leaves the recurrent approach behind and the first Transformer-like architecture
incorporating three different modalities – natural language, images, and low-level
actions for the agent control. In particular, we adopt an early fusion strategy to
merge lingual and visual information efficiently in our encoder. We then propose
to refine the decoding phase with a late fusion extension between the agent’s
history of actions and the perceptual modalities. We experimentally validate our
model on two datasets: PTA achieves state-of-the-art results in low-level VLN on
R2R and in the recently proposed R4R benchmark.

This Chapter is related to publication [7], as reported in the List of Publications.

93
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7.1 Introduction
Effective instruction-following and contextual decision-making can open the door
to a new world for researchers in Embodied AI. Deep neural networks have the
potential to build complex reasoning rules that enable the creation of intelligent
agents, and research on this subject could also help to empower the next gener-
ation of collaborative robots [145, 175]. In this scenario, Vision-and-Language
Navigation (VLN) [6] plays a significant part in current research. This task re-
quires to follow natural language instructions through unknown environments,
discovering the correspondences between lingual and visual perception step by
step. Additionally, the agent needs to progressively adjust navigation in light of
the history of past actions and explored areas. Even a small error while planning
the next move can lead to failure because perception and actions are unavoidably
entangled; indeed, we must perceive in order to move, but we must also move in
order to perceive [62]. For this reason, the agent can succeed in this task only by
efficiently combining the three modalities – language, vision, and actions.

In Chapter 6, we identify two main operating settings for VLN [96], called
high-level action space and low-level action space (Fig. 7.1). The concept of a
high-level, panoramic action space was first proposed by Fried et al. [56]. In this
setting, navigation takes place on a graph whose connectivity is known a priori
and the nodes are represented by different viewpoints (i.e. the locations where
the agent can step and look at the surroundings). High-level agents predict the
path to the goal as a sequence of connected viewpoints, and move through the
environment using a teleporting system. This aspect limits adaptability to real-
world applications and prevents current research on high-level VLN from having a
practical impact on embodied navigation robots. Instead, low-level methods make
predictions over the agent locomotor system, hence performing actions with a one-
to-one correspondence with the robot control system – rotateX°, tilt up/down, and
step forward are examples of low-level actions. Even though low-level navigation
can still be performed on a graph-like environment (with viewpoints as nodes), the
agent is not aware of it and does not exploit any knowledge related to the structure
of the underlying simulating platform. This setting is more in line with recent
research on Embodied AI platforms [145, 175], which is moving towards realistic
and low-level interactions with the environment and continuous control of the
agent. Since the adaptability to real-world applications represents an important
challenge in this scenario, we tackle the task of low-level VLN, in which abstract
reasoning (such as teleporting from a viewpoint to the next and knowledge of the
connectivity graph) is no longer available to the agent.

Encouraged by the success of attention in many vision-and-language tasks [51,
107, 164], we propose a new model for low-level VLN that exploits fully-attentive
networks to merge the knowledge coming from different domains. In this Chapter,
we devise Perceive, Transform, and Act (PTA), in which the different modalities
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PTA block PTA block

Instruction: Go past
the Christmas tree and
up the stairs. Stop at
the top at the door
reading 'City Room’.
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Figure 7.1: Previous approaches to VLN perform high-level navigation, relaxing
the assumptions on the agent action space. Instead, PTA implements low-level
interactions with the environment.

(text, vision, and actions) can be conditioned on the full history of previous
observations. While all the previous approaches to VLN rely on a recurrent policy
to track the agent’s internal status through time, we directly infer the state from
the observations via attention and avoid any form of recurrence (Fig. 7.2). For this
reason, our agent can model the dependencies tied to navigation more efficiently
and generalize to longer episodes better than other models.

At the present time, there is no study exploring the possibility for a given
architecture to switch between the high-level and the low-level action spaces. In
this Chapter, we experimentally show that methods born and designed for high-
level navigation experience a drop in performance when adapted for low-level
VLN. Indeed, high-level reasoning and abstraction from the physical environment
is too heavily exploited to let the agent walk on its own. This is not true for PTA,
which is designed for low-level use but can easily adapt to high-level scenarios.
We summarize our main contributions as follows:

• We propose a novel multimodal framework for low-level VLN that replaces
any form of recurrence with attention mechanisms, using them to tackle both
long-term dependencies and multimodality. To the best of our knowledge,
our model is the first Transformer-like architecture to merge visuo-linguistic
perception with information coming from the agent action system;

• We technically describe how it is possible to switch from a high-level output
space to a low-level locomotor system and vice versa. Experimental results
on this subject are the first to analyze the mutual relationships between
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Figure 7.2: Previous architectures for VLN build upon recurrent neural networks
to model long-term dependencies among the three modalities involved – text,
images, and actions. Instead, PTA takes full advantage of attention mechanisms.

low-level and high-level VLN, and validate the hypothesis that high-level
architectures are not easily adaptable to the low-level counterpart. Such
results highlight the need for more experiments in this direction for future
works;

• Experimental results show that PTA achieves state-of-the-art performance
on low-level VLN. We validate this claim on two different benchmarks of
increasing instruction length and complexity. Since our setting is closer to
real-world applications and requires to decode fine-grained atomic actions,
we believe that low-level VLN represents the next testbed for embodied
agents aiming to perform Vision-and-Language Navigation.

7.2 Related Work
For a comprehensive overview of low-level and high-level Vision-and-Language
Navigation, we refer the reader to Section 6.2. Here we present the related work
on attention networks, as well as the challenges of long-term dependencies and
multimodality implied by VLN.
Attentive Networks. The understanding and generation of language and se-
quences have traditionally been addressed either with recurrent [158] or convolu-
tional [7, 59] architectures. Fully attentive models, in which recurrent relations
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are replaced with self and cross-attention, have recently become the dominant
approach in language understanding tasks, with architectures like the Trans-
former [164] and BERT [51]. As a consequence, there is a growing interest
in the use of fully-attentive models in visual and multimodal tasks, like video
understanding [156], cross-modal retrieval [150] and image captioning [42, 104].
Our proposal is the first to employ a fully-attentive architecture for VLN and
integrates vision, language, and action using cross-attention operations.
Long-term Dependency and Multimodality in VLN. Most of the difficulties
and challenges of Vision-and-Language Navigation originates from long-term
dependencies and multimodality. Newly proposed benchmarks for VLN such
as the Room-for-Room (R4R) dataset [83] and new evaluation metrics based on
Dynamic Time Warping [112] show that traditional approaches hardly adapt to
longer trajectories. Indeed, the recurrent nature of previous methods exacerbates
the difficulty of learning long-term dependencies [20] both in the instruction and
in the navigation. In this Chapter, we employ these tools to show the effectiveness
of our approach purely based on attention.

Recently, some methods propose to deal with the challenges of multimodality
in VLN using a high-level perspective: a recent line of work designs graph opera-
tions to boost planning capabilities [50] or to model visuo-linguistic relationships
in the graph nodes [80]. Zhang et al. [181] propose to employ two levels of
attention-guided co-grounding, together with a new learning scheme alternating
teacher-forcing and student-forcing. Qi et al. [132] design an architecture taking
advantage from both visual tokens and action tokens in the instructions. Visual
tokens are employed to identify meaningful visual features in the environment,
while action tokens consider only the agent state (represented by coordinates
features). In the proposed architecture, we leverage the same intuition in our mul-
timodal decoder. In fact, we propose an additional decoding branch that does not
employ visual features, but focuses on action clues provided in the sole instruction.

7.3 Proposed Method
Our goal is to navigate unseen environments using low-level actions with the only
help of natural language instructions and egocentric visual observations. To merge
multimodal knowledge coming from the environment, we devise a two-stage
encoder. In the first stage, we focus on encoding the instruction – this step can
be done once per episode as the natural language indication remains the same
throughout the navigation. In the second stage, we use spatial attention to encode
the visual observation and then employ the encoded instruction coming from the
previous phase to enrich the agent representation of the surrounding environment.
At each time step, the agent selects a move to progress towards the goal. To
determine the next action, we fuse visuo-linguistic information with the history of
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actions via attention and build a multimodal decoder which merges the three
modalities: actions, images, and text. We then decode a probability distribution
over a low-level output space in which possible actions are atomic moves like
turn or step ahead. After a first phase in which we train the agent with imita-
tion learning, we implement an extrinsic reward function to promote coherence
between ground-truth and predicted trajectories. We are the first, to the best of
our knowledge, to build a VLN architecture without recurrence. Each component
of our model is end-to-end trainable. Our architecture is depicted in Fig. 7.3 and
detailed next.

7.3.1 Two-stage Encoder

At the beginning of each navigation episode, the agent receives a natural language
instruction {w0, w1, . . . , wn−1} of variable length n. The agent also perceives a
panoramic 360° image of the surroundings It at each timestep t. Our encoder
consists of a single branch for each modality: text and images, and then employs
attention to create a fused representation which specifically models the relevance
of the source instruction into the visual observation.

Instruction Encoding. To encode the textual instruction, we employ an attention
mechanism with multiple heads, followed by a feed-forward network. As a first
step, we filter stop words and apply GloVe embeddings [131] to obtain a mean-
ingful representation for each word. We then apply the following transformation:

X̃ = LayerNorm (max(0,XWx + bx)) , (7.1)

where X is the GloVe embedding for the natural language instruction, Wx ∈
RdGloVe×dmodel and bx ∈ Rdmodel are learnable parameters, and LayerNorm(·) stands
for layer normalization. Since the instruction encoder has no recurrence, we must
inject information about the relative position of the words in the sentence. Such
information is added in the form of positional encoding to the input embeddings.
The positional encodings have the same dimension as the embeddings, so that the
two can be summed. We employ sine and cosine functions of different frequencies,
in line with [164]:

PE(pos,2j) = sin(pos/100002j/dmodel),

PE(pos,2j+1) = cos(pos/100002j/dmodel),
(7.2)

where pos is the position in the sequence and j is the channel index. At this
point we use multi-head attention to create a representation that models temporal
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dependencies inside the instruction. Multi-head attention is defined as:

MH (Q,K,V ) = Concat (h1,h2, . . . ,hh)WO,

hi = Attention
(
QWQ

i ,KWK
i ,V W V

i

)
,

(7.3)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and WO ∈

Rhdv×dmodel denote learnable weight matrices, and the index i stands for the ith

head in the multi-head attention module. As also stated in our implementation
details, dk = dv = dmodel/h. In each head, we employ the scaled dot-product
attention defined by Vaswani et al. [164]:

Attention (Q,K,V ) = softmax
(
QK>√
dk

)
V . (7.4)

The attention mechanism described by Eq. 7.4 computes a weighted sum of the
values (V ) basing on the similarity between the keys and the queries (K and Q).
In the self-attention, the same source sequence (X̃ in this case) is employed to
model the (Q,K,V ) triplet of Eq. 7.3. Following the attention layer, we place a
feed-forward multilayer perceptron:

FF
(
X̃
)

= max
(

0, X̃W1 + b1

)
W2 + b2, (7.5)

where W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel , b1 ∈ Rdff , b2 ∈ Rdmodel . At the end
of this step, we obtain the attended representation for the current instruction
X̃ = {x̃0, x̃1, . . . , x̃n−1}, that we use both during image encoding and in our
multimodal decoder.
Image Encoding. As a first step, we discretize the 360° panoramic image of the
surroundings It in 36 squared locations and we extract the corresponding visual
features with a ResNet-152 [73] trained on ImageNet [49]. Each viewpoint covers
30° in the equirectangular image representing the agent surroundings, hence the
image representation takes the form of a 3 × 12 grid. We then project visual
features with a transformation similar to Eq. 7.1, but instead of using sinusoidal
positional encodings, we append a coordinate vector given by:

coordt = (sinφt, cosφt, sin θt) , (7.6)

where φt ∈ (−π, π] and θt ∈ [−π2 ,
π
2 ] are the heading and elevation angles for

each viewpoint in the 3×12 grid relative to the agent position at timestep t. We then
apply multi-head self-attention according to Eq. 7.3 to help modeling concepts
such as relative positions between objects. In this layer, the input sequence
modeling (Q,K,V ) is composed by the features extracted from the 36 squared
regions of It.



7.3. PROPOSED METHOD 101

After this step, we aim to create an image representation enriched with the
textual concepts expressed by the attended instruction X̃ . We use cross-attention
to achieve this goal, and employ X̃ as keys and values for multi-head attention
(Eq. 7.3), while the queries come from the output of the previous self-attention
layer. Using cross-attention, we enrich visual information with a weighted sum
of the instruction tokens. From the resulting representation it is possible to
draw concepts such as the tableness or the redness of an image region, given an
instruction that refers to concepts such as table or red. Finally, a feed-forward
network as in Eq. 7.5 is applied to obtain the attended visual observation Ĩt.

7.3.2 Multimodal Decoder

Our decoder predicts the next action to perform among the following instructions:
turn right/left 30°, tilt up/down, step forward, and end episode – to signal that it
has reached the goal.

Contextual History for Action Decoding. The first part of our decoder takes into
account the history of past actions. While previous methods employ a recurrent
neural network to keep track of previous steps (see for instance [6, 109, 168]),
we explicitly model Ht = {a0, a1, . . . , at−1} as the set of actions performed
before the current timestep t. Note that a0 coincides with the <start> token.
We add sinusoidal positional encoding (Eq. 7.2) to provide temporal information
and apply multi-head self-attention to obtain an attended history representation
H̃t = {ã0, ã1, . . . , ãt−1}.
Late Fusion of Perception and Action. At this point, H̃t contains the relevant
information regarding the action history of the navigation episode. However, this
information must be enriched with the perception coming from the environment.
We merge textual and visual information with H̃t via attention, allowing mutual
influence between perception and motion. We build two branches of multi-head
cross-attention accepting respectively X̃ and Ĩt as key/value pairs and using H̃t

as query. The image-action cross-attention is motivated by the fact that the agent
needs to look around before decoding the next action. Since Ĩt already contains
information coming from the instruction, this cross-attention layer is sufficient to
achieve decent results on the VLN task (as demonstrated by our ablation studies).
However, we find out that adding a separate text-action cross-attention layer helps
generalization in unseen environments. After this step, we concatenate the two
representations and apply a FC layer to obtain the output sequence whose last
element corresponds to ãt. With this last layer, we perform a late fusion of
visuo-linguistic information with the agent internal state (given by its previous
history). It is worth noting that PTA also comprises an early fusion mechanism:
the cross-attention between X̃t and the attended visual input introduced in the
Image Encoder. In our ablation study, we discuss the positive effects given by the
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early fusion and the late fusion mechanisms.

Action Selection. To select the next low-level action, we project the final repres-
entation ãt in a six-dimensional space corresponding with the agent locomotor
space containing the following actions: turn right/left 30°, tilt up/down, step for-
ward, and end episode. The output probability distribution over the action space
can therefore be written as:

pt = softmax (ãtWp + bp) , (7.7)

where Wp ∈ Rdmodel×nactions and bp ∈ Rnactions are learned parameters (nactions = 6).
During training, we sample the next action to perform at from pt, while we select
at = argmax(pt) during evaluation and test.

7.3.3 Training

Our training setup includes two distinct objective functions. The first estimates
the policy by imitation learning, while the second enforces similarity between the
ground-truth and predicted trajectories via reinforcement learning.

Imitation Learning. To approximate a good policy, we first train our agent using
strong supervision. At each timestep t, the simulator outputs the ground-truth
action yt. In the low-level setup, the ground-truth action is the one that allows
getting to the next target viewpoint in the minimum amount of steps. In this phase,
we aim to minimize the cross-entropy loss of the predicted distribution pt w.r.t.
the ground-truth action yt.

Extrinsic Reward. After a first training phase with supervised learning, we
finetune our agent using an extrinsic reward function. Recently, Magalhaes et
al. [112] propose to employ Dynamic Time Warping (DTW) [21] to evaluate
the trajectories performed by navigation agents. In particular, they define the
normalized Dynamic Time Warping (nDTW) as:

nDTW(R,Q) = exp

(
−DTW(R,Q)

|R| · dth

)
, (7.8)

where R and Q are respectively the reference and the query paths, |R| is the length
of the reference path, and dth is the success threshold distance. At each navigation
step t, the agent receives a reward equal to the gain in terms of nDTW:

Rt = nDTW(q0,...,t, R)− nDTW(q0,...,t−1, R). (7.9)

Additionally, we give an episode-level reward to the agent if it terminates the
navigation within a success threshold distance dth from the goal, given by Rs =



7.4. LOW-LEVEL AND HIGH-LEVEL NAVIGATION 103

max(0, 1− dgoal/dth), where dgoal is the final distance between the agent and the
target. We can write our final reinforcement learning objective function as:

Lrl = −Eat∼πθ [At] , (7.10)

where the advantage function At = Rt + Rs. Based on REINFORCE al-
gorithm [172], we derive the gradient of our reward-based objective as:

∇θLrl = −At∇ log πθ(at|st). (7.11)

7.4 Low-level and High-Level Navigation
Section 7.3 describes our approach to low-level VLN. Here, we discuss the main
technical differences with the high-level counterpart and explain how PTA can
switch from one setting to the other. Differently from the low-level architectures,
a high-level method aims to predict the next node to traverse in the navigation
graph, as physical navigation takes place with a teleport mechanism. The choice
at time step t is done with a similarity measure between the agent internal state st
and the appearance vector for the navigable locations vt. This similarity function
is normally mapped into a bilinear dot-product:

pt = softmax
(
f(st)

>g(vt)
)
, (7.12)

where f(·) and g(·) are generic transformations.
In principle, it is possible to substitute the final softmax classifier of a low-level

architecture (Eq. 7.7) with Eq. 7.12 and change the corresponding action space.
According to this observation, we can swap the action space of a model to test
its adaptability to different navigation settings. While traditional approaches start
from the hidden state of the recurrent policy to estimate the agent’s internal state
st, we can derive it directly from ãt:

st = ãtWs + bs, (7.13)

where Ws and bs are learned parameters. As vt, we select the unattended visual
features augmented with the coordinate vector described by Eq. 7.6, and apply the
following transformation:

g(vt) = max (0,vtWv + bv) , (7.14)

where Wv and bv are learned parameters.
In our architecture, ãt can fit to represent any kind of information about the

current navigation. This is because it can draw knowledge from the perceptual
modalities and the history of past actions directly and without the bottleneck
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represented by a recurrent network. Our experiments on this subject (Sec. 7.5.3)
show that our model stands out from the literature in terms of adaptability. In other
words, PTA can adapt to a different action space because it does not make any
assumptions on the underlying simulating platform. Instead, our architecture relies
on efficient visuo-linguistic fusion mechanisms designed to be agnostic towards
the final action space. We will see that methods making stronger assumptions on
the action space experience a larger drop in performance than PTA.

7.5 Experiments and Discussion

7.5.1 Experimental Setup
Datasets. In our experiments, we primarily test our architecture on the R2R dataset
for VLN [6]. This dataset builds on the Matterport3D dataset of spaces [31], which
contains complete scans of 90 different buildings. The visual data is enriched
with more than 7 000 navigation paths and 21 000 natural language instructions.
The episodes are divided into a training set, two validation splits (validation-
seen, with environments that the agent has already seen during training, and
validation-unseen, containing only unexplored buildings), and a test set. The
testing phase takes place in previously unseen environments and is accessible
via a test-server with a public leaderboard. While the instructions in R2R are
quite long and complex (about 29 words on average), navigation episodes usually
involve a limited number of steps – max 6 steps for high-level action space and
max 23 steps for the low-level setup. In the R4R dataset, Jain et al. [83] merge the
paths in R2R to create a more complex and challenging setup. Episodes become
considerably longer, pushing the traditional approaches to their limits and testing
their generalizability to arbitrary long instructions and more complex trajectories.

Evaluation Metrics. In line with previous literature, we mainly focus on four
metrics. NE (Navigation Error) measures the mean distance from the goal and
the stop point. SR (Success Rate) is the fraction of episodes concluded within
a threshold distance from the target – 3 meters for all of the previous papers on
the subject. OSR (Oracle SR) represents the SR that the agent would achieve if it
received an oracle stop signal when passing within the threshold distance from
the goal, while SPL (SR weighted by inverse Path Length) penalizes navigation
episodes that deviate from the shortest path to the goal. SPL is accredited to be
the most reliable metric on the R2R dataset [3], as it strongly penalizes exhaustive
exploration and search methods like beam search. Recently, Jain et al. [83] propose
to use Coverage weighted by Length Score (CLS) to replace SR for generic
navigation trajectories, as this metric is also sensitive to intermediate nodes in
the reference path. Additionally, Magalhaes et al. [112] propose Dynamic Time
Warping (DTW) and derived metrics (Normalized DTW and Success weighted
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by normalized DTW) to measure the similarity between reference and predicted
paths. These three last metrics are more meaningful on the R4R dataset than SR
and SPL [83].
Implementation Details. In the instruction encoder, dGloVe = 300. In each
component of our model, we project the input features into a dmodel-dimensional
space, with dmodel = 512. For multi-head attention, we employ h = 8 heads, thus
dk = dv = dmodel/h = 64. The internal representation of feed-forward networks
has size dff = 2048. After each sub-module, we add a residual connection followed
by layer normalization. We also apply dropout [152] with drop probability p = 0.1
after each linear layer. During training, we use Adam optimizer [90] with learning
rate 10−4, we set the batch size to 32 and reduce the learning rate by a factor 10 if
the SPL on the validation unseen split does not improve for 5 consecutive epochs.
We stop the training after 30 epochs without improvement on the same metric.
When finetuning using REINFORCE, we set the initial learning rate to 10−7.

7.5.2 Ablation Study
In our ablation study, we experimentally validate the importance of each module in
our architecture. First, we ablate multimodality in our decoder. Then, we remove
cross-attention between visual and lingual information in the encoder. Finally,
we show the impact of using the history of actions Ht and the role of synthetic
data augmentation [56] and REINFORCE. Results are shown in Table 7.1 and
discussed below.
Multimodal Decoder. In our first ablation study, we use only one of the two
decoder branches at the time, and we do not perform late fusion between lingual
and visually-grounded information. When removing the textual branch (Table 7.1,
line 3), our agent performs worse on unseen environments, hence losing potential
in terms of generalization. When removing the visual modality, our PTA agent is
blinded and can only count on the natural language instruction. This setup leads to
success only when the instruction does not involve references to objects or visual
properties of the environment – a nearly empty subset of the dataset. Indeed, the
metrics for our blind agent are extremely low, and they do not vary between seen
and unseen environments (Table 7.1, line 4). This result is meaningful in light of
recent studies proving that some single-modality agents perform better than their
multimodal version by removing the visual perception and overfitting on dataset
biases [162].
Early Fusion of Textual and Visual Perception. As a second experiment, we
remove the early fusion mechanism, namely the cross-attention layer between the
textual and visual branches of our encoder, to check its contribution. If this fusion
layer is redundant, we expect that the late fusion stage will compensate for the loss.
Instead, we experience a drop in performance: −12% in terms of SPL in unseen
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environments (Table 7.1, line 5). We thus prove the importance of early textual
and visual fusion in our architecture for VLN.

Contextual History for Action Decoding. Ht stores past actions as a series of
one hot vectors, and it is extremely helpful to model navigation history. It acts as
a sort of memory for the agent, so that it knows what actions have already been
made. A similar trick in LSTM-based VLN consists in adding the last action as
input to the policy RNN at each step. In our model, removing Ht and using only
the last action (losing all the history) causes a drop in performance: −14% and
−17% on SPL and SR respectively for the Val-Unseen split (Table 7.1, line 6).

Data Augmentation. In line with previous literature, we find the use of additional
synthetic instructions useful to initialize our agent. The synthetic training set was
provided by Fried et al. [56] using a Speaker module. After a first training with
the full set of instructions (synthetic and human-generated), we finetune using
only the original R2R train set. Results are reported in Table 7.1, line 7.

Extrinsic Reward. While imitation learning allows approximating a good policy,
there is still room for improvement via reinforcement learning. Wang et al. [168]
were the first to use REINFORCE in the context of VLN to refine their navigation
policy based on cross-modal matching. In line with them, we find REINFORCE
beneficial for our model: our final agent sticks more closely to the reference
trajectory and penalizes overlong navigations (Table 7.1, line 8).

7.5.3 Results on R2R
In our experiments on the R2R dataset [6], we test the ability of our agent to
navigate unseen environments in light of previously unseen natural language
instructions. The main test-bed for this experiment is represented by the R2R
evaluation leaderboard, which is publicly available online.

Comparison with SOTA. In Table 7.2, we report our results on the R2R test
set, together with the results achieved by other state-of-the-art architectures on
VLN. Other methods that operate in the low-level action space are the sequence-
to-sequence architecture proposed by Anderson et al. [6], the RPA model using
a mixture of model-free and model-based reinforcement learning [169], and the
recurrent architecture with dynamic convolutional filters proposed in Chapter 6.
Our method overcomes the state-of-the-art on low-level VLN by a large margin
(5% in terms of SPL and SR).

Although a direct comparison between the two settings is not feasible, we
notice that PTA performs better than some high-level architectures in terms of SPL.
Notably, we achieve this result without making any assumption on the underlying
simulating platform and decoding a longer sequence of atomic moves, instead of
target viewpoints. Moreover, high-level architectures can often count on efficient
graph-search methods (impractical when dealing with continuous controls) to
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Test (Unseen)

Low-level Methods NE ↓ SR ↑ OSR ↑ SPL ↑

Random 9.77 0.13 0.18 0.12
Anderson et al. [6] 7.85 0.20 0.27 0.18
Wang et al. [169] 7.53 0.25 0.33 0.23
Dynamic Filters [§ 6] 6.55 0.35 0.45 0.31

PTA 6.17 0.40 0.47 0.36

Test (Unseen)

High-level Methods NE ↓ SR ↑ OSR ↑ SPL ↑

Fried et al. [56] 6.62 0.35 0.44 0.28
Ma et al. [109] 5.67 0.48 0.59 0.35
Wang et al. [168] 6.01 0.43 0.51 0.35
Ma et al. [110] 5.69 0.48 0.56 0.40
Ke et al. [88] 5.14 0.54 0.64 0.41
Tan et al. [159] 5.23 0.51 0.59 0.47
Li et al. [99] 4.53 0.57 0.63 0.53

Table 7.2: Results on the R2R test server for low-level (top) and high-level (bottom)
methods. We chose the best version of each model basing on SPL.

decode the final trajectory, and on additional modules that are not present in our
method. While these are effective for high-level VLN, their generalizability to a
low-level setup, closer to real-world application, is yet to be tested.

Switching from Low-level to High-level. Our second experiment on R2R aims
to test the effects of retraining existing models after switching their final action
spaces (from high-level to low-level and vice-versa). To that end, we change the
final classifier of PTA as described in Section 7.4. In this new setting, the output of
the action decoder becomes a probability distribution over the adjacent nodes of the
navigation graph. Once the agent decides where to go, the displacements are made
automatically and there is no need to decode lower-level actions such as rotations.
We train PTA from scratch in this setup, without any further hyperparameter tuning.
In Table 7.3 we detail the full set of metrics obtained using PTA with the high-level
classifier, and compare with the model incorporating the low-level control system.
The small gap between the metrics in the two setups suggests that PTA does not
take any particular advantage from the underlying action space. Of course, metrics
that directly evaluate the final trajectory (like DTW-based metrics) benefits from
using high-level actions with automatic oracle displacements.

In principle, every model should exhibit a decent level of elasticity towards
different locomotor settings. In practice, we find out that architectural choices
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Figure 7.4: Visualization of the navigation error (left) and success rate (right)
on the R2R val-unseen split. A larger difference between the blue and gray bars
denotes a lower degree of adaptability. The gap is reduced when using PTA.

R2R Validation-Unseen

Method NE ↓ SR ↑ OSR ↑ SPL ↑ CLS ↑ nDTW ↑ SDTW ↑

PTA low-level 6.00 0.40 0.47 0.36 0.52 0.41 0.28
PTA high-level 5.95 0.43 0.49 0.39 0.53 0.53 0.35

Table 7.3: Comparison between the low-level and the high-level version of PTA.
On all the metrics, a small gap denotes high adaptaility. DTW-based metrics highly
benefits from the use of a high-level action space.

that strongly help high-level VLN often end up hindering the other setup. This
is especially true when the agent exploits high-level reasoning and makes strong
assumptions on the nature of the underlying simulator. As a result, current high-
level methods experience a drop in performance when adopting a simple, atomic
action space (see Figure 7.4). PTA, instead, does not rely on such assumptions
and builds on more efficient modules to merge multimodal information entailed
in the VLN task. The plots in Figure 7.4 show that our model exhibits far greater
flexibility to the final action space than other architectures. The considerably
narrow step between the blue and the gray bars (representing the low-level and
the high-level actions spaces respectively) denotes that a change in the final action
space does not prevent PTA from reaching its goal. We compare with the Speaker-
Follower [56] and the Self-Monitoring agent [109] from the high-level setup,
which experience a sizeable loss in performance. In fact, results drop of 11% and
13% respectively in terms of SR when adapted for low-level use. We also compare
PTA with the recurrent architecture exploiting dynamic convolution described in
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Section 6.3 from the low-level category. The lower degree of adaptability shown
by this method is motivated by the fact that it operates a strong compression on
the visual input basing on the current instruction. In this step, much information
that could ease high-level action selection is lost.

To conduct this experiment we adjust the codes from [109], which is publicly
available online, and report the results in the paper for [56]. We choose the Speaker-
Follower and the Self-Monitoring agents because they are flexible frameworks
by design, and for this reason they are the most suitable models among their
high-level peers for this comparison. We believe that the findings and insights
provided in this experiment will motivate further experiments in this direction, and
help to unravel the main reasons of improvements in new architectures for VLN.
Qualitative Results. In Fig. 7.5, we report a qualitative result from the R2R
val-unseen set. Remarkably, PTA is able to ground concepts such as “the second
doorway on your left” and terminates the navigation episode successfully. Since
our agent operates in a low-level setup, it needs to orientate towards the next
viewpoint before stepping ahead, making the decoding phase more challenging.

7.5.4 Results on R4R
R4R [83] builds upon R2R and aims to provide an even more challenging setting
for embodied navigation agents. While navigation in R2R is usually direct and
takes the shortest path between the starting position and the goal viewpoint,
trajectories in R4R may bend and return on the agent’s previous steps. This change
calls for adaptation in evaluation metrics: SPL and SR are now less indicative
because the agent might stop close the goal in the first half of the navigation and
still fail to complete the second part. In this sense, an important role is played by
recently proposed metrics: CLS [83] and nDTW [112].

In fact, CLS and nDTW take into account the agent’s steps and are sensitive to
intermediate errors in the navigation path. For this reason, these last metrics are
more meaningful when evaluating navigation agents on R4R.
Comparison with SOTA. In this experiment, we compare PTA with other state-
of-the-art architectures for VLN and report the results in Table 7.4. In the low-
level setup, we compare to the recurrent architecture with dynamic convolution
proposed in Section 6.3. Results show that our approach performs better on all
of the main metrics. In particular, a lower NE and a higher CLS indicate that
our agent tends to get closer to the goal while sticking to the natural language
instruction better than the competitor. We also report the results obtained by our
model incorporating the high-level decision space. We compare with Speaker-
Follower [56] and RCM [168], as implemented in [83]. PTA performs better than
its high-level competitors on the majority of the metrics. In particular, the higher
CLS score shows that PTA can generally select a path that follows the instruction
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better than the competitors. When considering the reference metrics proposed for
R4R [83], our architecture achieves the best results on both the setups.

7.6 Conclusion
In this Chapter, we have presented Perceive, Transform, and Act (PTA), the first
fully-attentive model for VLN. In particular, we tackle the challenging task of
low-level VLN, in which high-level information about the environment is no
longer accessible to the agent. We show that previous work on high-level VLN
suffers from low flexibility and experiences a drop in performance when adapted
for low-level use, while our agent naturally adapts to the other action space. These
results suggest that boosts in performance observed in high-level VLN may be
due to the use of a simpler action space, and encourage further research in this
direction. Our architectural choices allow for a significant boost in performance:
PTA achieves good results on low-level VLN, and when testing on the recently
proposed R4R dataset, PTA achieves promising results in both the setups.



Chapter 8
Embodied Navigation in the Real
World

The research field of Embodied AI has witnessed substantial progress in visual
navigation and exploration thanks to powerful simulating platforms and the availab-
ility of 3D data of indoor and photorealistic environments. These two factors have
opened the doors to a new generation of intelligent agents capable of achieving
nearly perfect PointGoal Navigation. However, such architectures are commonly
trained with millions, if not billions, of frames and tested in simulation. Together
with great enthusiasm, these results yield a question: how many researchers will
effectively benefit from these advances? In this Chapter, we detail how to transfer
the knowledge acquired in simulation into the real world. To that end, we describe
the architectural discrepancies that damage the Sim2Real adaptation ability of
models trained on the Habitat simulator and propose a novel solution tailored
towards the deployment in real-world scenarios. We then deploy our models on
a LoCoBot, a Low-Cost Robot equipped with a single Intel RealSense camera.
Different from previous work, our testing scene is unavailable to the agent in
simulation. The environment is also inaccessible to the agent beforehand, so it
cannot count on scene-specific semantic priors. In this way, we reproduce a setting
in which a research group (potentially from other fields) needs to employ the agent
visual navigation capabilities as-a-Service. Our experiments indicate that it is
possible to achieve satisfying results when deploying the obtained model in the
real world.

This Chapter is related to publication [6], as reported in the List of Publications.

113
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8.1 Introduction
Embodied AI has recently attracted a lot of attention from the vision and learning
communities. This ambitious research field strives for the creation of intelligent
agents that can interact with the surrounding environment. Smart interactions,
however, require fine-grained perception and effective planning abilities. For this
reason, current research focuses on the creation of rich and complex architectures
that are trained in simulation with a large amount of data. Thanks to powerful
simulating platforms [48, 145, 175], the Embodied AI community could achieve
nearly perfect results on the PointGoal Navigation task (PointNav) [171]. However,
current research is still in the first mile of the race for the creation of intelligent
and autonomous agents. Naturally, the next milestones involve bridging the gap
between simulated platforms (in which the training takes place) and the real
world [85]. In this Chapter, we aim to design a robot that can navigate in unknown,
real-world environments.

We ask ourselves a simple research question: can the agent transfer the
skills acquired in simulation to a more realistic setting? To answer this question,
we devise a new experimental setup in which models learned in simulation are
deployed on a LoCoBot [106]. Previous work on Sim2Real adaptability from the
Habitat simulator [145] has focused on a setting where the real-world environment
was matched with a corresponding simulated environment to test the Sim2Real
metric gap. To that end, Kadian et al. [85] carry on a 3D acquisition of the
environment specifically built for robotic experiments. Here, we assume a setting
in which the final user cannot count on the technology/expertise required to make
a 3D scan. This experimental setup is more challenging for the agent, as it cannot
count on semantic priors on the environment acquired in simulation. Moreover,
while [85] employs large boxes as obstacles, our testing scene contains real-life
objects with complicated shapes such as desks, office chairs, and doors.

Our agent builds on a recent model proposed by Ramakrishnan et al. [135]
for the PointNav task. As a first step, we research the optimal setup to train the
agent in simulation. We find out that default options (tailored for simulated tasks)
are not optimal for real-world deployment: for instance, the simulated agents
often exploit imperfections in the simulator physics to slide along the walls. As a
consequence, deployed agents tend to get stuck when trying to replicate the same
sliding dynamic. By enforcing a more strict interaction with the environment,
it is possible to avoid such shortcomings in the locomotor policy. Secondly, we
employ the software library PyRobot [118] to create a transparent interface with
the LoCoBot: thanks to PyRobot, the code used in simulation can be seamlessly
deployed on the real-world agent by changing only a few lines of code. Finally,
we test the navigation capabilities of the trained model on a real scene: we create
a set of navigation episodes in which goals are defined using relative coordinates.
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While previous tests were mainly made in robot-friendly scenarios (often
consisting of a single room), we test our model, which we call LoCoNav, in a more
realistic environment with multiple rooms and typical office furniture (Fig.8.1).
Thanks to our experiments, we show that models trained in simulation can adapt
to real unseen environments. By making our code and models publicly available,
we hope to motivate further research on Sim2Real adaptability and deployment in
the real world of agents trained on the Habitat simulator.

8.2 Related Work

Embodied AI. There is a broad area of recent research that focuses on designing
autonomous agents with different abilities. Among these, a vast line of work
concentrates on embodied exploration and navigation [32, 36, 95, 135, 136]. In
this setting, the agent’s goal is to explore a new environment in the shortest amount
of time. Architectures trained for this task usually employ reinforcement learning
to maximize coverage (the area seen during a single episode) [32], surprisal [22],
or a reward based on the novelty of explored areas [136]. Usually, this is done
by creating internal map representations to keep track of the exploration progress
and at the same time help the agent plan for future destinations [32, 36, 135]. The
main advantage of these approaches is their ability to adapt to downstream tasks,
such as PointGoal [135] or ObjectGoal [33] navigation. In PointGoal navigation,
the target destination is specified using relative coordinates w.r.t. the agent’s initial
position and heading [145]. Using simulation and impressive computational power,
Wijmans et al. [171] achieve nearly perfect results. However, their model is trained
using 2.5 billion frames and requires experience acquired over more than half a
year of GPU time. Unfortunately, models tend to learn simulator-specific tricks to
circumvent navigation difficulties [85]. Since such shortcuts do not work in the
real world, there is a significant Sim2Real performance gap.

Sim2Real Adaptation. Recent work has studied how to deploy models trained on
simulation to the real world [48, 85, 141]. In their work, Kadian et al. [85] make
a 3D acquisition of a real-world scene and study the Sim2Real gap for various
setups and metrics. However, their environment is very simple as obstacles are
large boxes, the floor has an even and regular surface in order to facilitate the
actuation system, and there are no doors or other navigation bottlenecks. In this
work, instead, we focus on a more realistic type of environment: obstacles are
represented by common office furniture such as desks, chairs, cupboards; the floor
is uneven as there are gaps between floor tiles that make actuation noisy and very
position-dependent, and there are multiple rooms that must be accessed through
doorways.
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8.3 Real-World Navigation with Habitat
In this Section, we describe our out-of-the-box navigation robot. First, we describe
the baseline architecture and its training procedure that takes place in the Habitat
simulator [145]. Then we present our LoCoNav agent, which builds upon the
baseline and implements various modules to enable real-world navigation.

8.3.1 Baseline Architecture

We draw inspiration from the occupancy anticipation agent [135] to design our
baseline architecture. The model consists of three main parts: a mapper, a pose
estimator, and a hierarchical policy, that we describe in the following.

Mapper. The mapper is responsible for producing an occupancy map of the
environment, which is then employed by the agent as an auxiliary representation
during navigation. We use two different types of map at each time step t: the
agent-centric map vt that depicts the portion of the environment immediately in
front of the agent, and the global map mt that captures the area of the environment
already visited by the agent. The global map of the environment mt is blank at
t = 0 and it is built in an incremental way. Each map has two channels, identifying
the free/occupied and the explored/unexplored space, respectively; each pixel
contains the state of a 5cm × 5cm area. The mapper module takes as input the
RGB and depth observations (ort , o

d
t ) at time t and produces the agent-centric map

vt ∈ [0, 1]2×V×V . The RGB observation is encoded to a feature representation
ōrt with the first two layers of a pretrained ResNet-18 followed by a three-layered
CNN. Instead, the depth observation is used to create a point-cloud and reprojected
to form a preliminary map ōdt . The resulting agent-centric map vt is computed
by combining ōrt and ōdt with a U-Net. Then, vt is registered to the global map
mt ∈ [0, 1]2×W×W , with W > V , using the agent’s position and heading in the
environment (xt, yt, θt).

Pose Estimator. While the agent navigates towards the goal, the interactions with
the environment are subject to noise and errors, so that, for instance, the action go
forward 25cm might not result in a real displacement of 25cm. That could happen
for a variety of reasons: bumping into an obstacle, slipping on the terrain, or simple
actuation noise. The pose estimator is responsible of avoiding such positioning
mistakes and keeps track of the agent pose in the environment at each time step t.
This module computes the relative displacement (∆xt,∆yt,∆θt) caused by the
action selected by the agent at time t. It takes as input the RGB-D observations
(ort , o

d
t ) and (ort−1, o

d
t−1) retrieved at time t and t− 1, and the egocentric maps vt

and vt−1. Each modality is considered separately to obtain a first estimate of the
displacement:

gi = W1max(W2 ?+b2, 0) + b1, (8.1)
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The final output of the pose estimator is the weighted sum of the three displacement
vectors gi:

(∆xt,∆yt,∆θt) =

2∑
i=0

αi · gi, (8.2)

αi = softmax(MLPi([ōrt , ō
d
t , v̄t])), (8.3)

where MLP is a three-layered fully-connected network, (ōrt , ō
d
t , v̄t) are the inputs

encoded by a CNN and [·, ·, ·] denotes tensor concatenation. The estimated pose
of the agent at time t is given by

(xt, yt, θt) = (xt−1, yt−1, θt−1) + (∆xt,∆yt,∆θt). (8.4)

Hierarchical Policy. Following a current trend in Embodied AI [32, 36, 135],
we employ a hierarchical policy in our baseline navigator. The highest-level
component of our policy is the global policy. The global policy selects a long-term
goal on the global map, that we call global goal. The input of the global policy
at time t is a 4-channel enriched global map m+

t ∈ [0, 1]4×W×W obtained as
the concatenation of the global map mt with a spatial representation of visited
states and a one-hot representation of the agent position at time t. Finally, we
compute an 8-channel input of shape G × G for the global policy. To that end,
we concatenate a cropped and a max-pooled version of m+

t . The global policy
outputs a probability distribution over the G×G action space. The global goal
is sampled from this distribution and is then converted to (x, y) coordinates on
the global map. A new global goal is sampled every N time steps during training
and is set to the navigation goal during deployment and test. The middle-level
component of our hierarchical policy is the planner. After the global goal is set,
an A* planner decodes the next local goal within 0.25m from the agent and on
the trajectory towards the global goal. A new local goal is sampled if at least one
of the following three conditions verifies: a new global goal is sampled by the
global policy, the previous local goal is reached, or the local goal is known to be
in an occupied area. Finally, the local policy performs the low-level navigation
and decodes the series of actions to perform. The actions available to the agents
are go forwards 25cm and turn 15°. The local policy samples an atomic action at
at each time step t.

8.3.2 Training in Simulation
The baseline architecture described in the previous lines is trained in simulation
using Habitat [145] and 3D scans from the Gibson dataset of spaces [175]. The
mapper is trained with a binary cross-entropy loss using the ground-truth occu-
pancy maps of the environment, obtained as described in [135]. The navigation
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policy is trained using reinforcement learning. We choose PPO [147] as training
algorithm. The global policy receives a reward signal equal to the increase in
terms of anticipated map accuracy [135]:

Rglob
t = Accuracy(mt, m̂)− Accuracy(mt−1, m̂), (8.5)

where mt and mt−1 represent the global occupancy maps computed at time t and
t − 1 respectively, and m̂ ∈ [0, 1]2×W×W is the ground-truth global map. The
map accuracy is defined as:

Accuracy(m, m̂) =

W 2∑
i=1

2∑
j=1

1[mij = m̂ij ], (8.6)

where 1[·] is an indicator function that returns one if the condition [·] is true and
zero otherwise. The local policy is trained using a reward that encourages the
decrease in the euclidean distance between the agent and the local goal while
penalizing collisions with obstacles:

rlocalt = dt − dt−1 − α ∗ bumpt, (8.7)

where dt and dt−1 are the euclidean distances to the local goal at times t and t− 1,
bumpt ∈ {0, 1} identifies a collision at time t and α regulates the contributions of
the collision penalty. The training procedure described in this section exploits the
experience collected throughout 6.5 million exploration frames.

8.3.3 LoCoNav: Adapting for Real World
The baseline architecture described above is trained in simulation and achieves
state-of-art results on embodied exploration and navigation [135]. The reality,
however, poses some major challenges that need to be addressed to achieve good
real-world performances. For instance, uneven ground might give rise to errors and
noise in the actuation phase. To overcome this and other discrepancies between
simulated and real environments, we design LoCoNav: an agent that leverages the
availability of powerful simulating platforms during training but is tailored for real-
world use. In this Section, we describe the main characteristics of the LoCoNav
design. We deploy our architecture on a LoCoBot [106] and use PyRobot [118]
for seamless code integration.
Prevent your Agent from Learning Tricks. All simulations are imperfect. One
of the main objectives when training an agent for real-world use in simulation is
to prevent it from learning simulator-specific tricks instead of the basic navigation
skills. During training, we observed that the agent tends to hit the obstacles instead
of avoiding them. This behavior is given by the fact that the simulator allows the
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agent to slide towards its direction even if it is in contact with an obstacle as if
there were no friction at all. Unfortunately, this ideal situation does not fit the real
world, as the agent needs to actively rotate and head towards a free direction every
time it bumps into an obstacle. To replicate the realistic sticky behavior of surfaces,
we check the bumpt flag before every step. If a collision is detected, we prevent
the agent from moving forward. As a result, our final agent is more cautious about
any form of collision.

Sensor and Actuation Noise. Another important discrepancy between simulation
and real-world is the difference in the sensor and actuation systems. Luckily, the
Habitat simulator allows for great customization of input-output dynamics, thus
being very convenient for our goal. In order to train a model that is more resilient
to the camera noise, we apply a Gaussian Noise Model on the RGB observations
and a Redwood Noise Model [39] on the depth observations. Unfortunately,
the LoCoBot RealSense camera still presents various artifacts and regions with
missing depth values. For that reason, we need to restore the observation retrieved
from the depth camera before using it in our architecture. To that end, we apply the
hole filling algorithm described in [161], followed by the application of a median
filter.

Regarding the actuation noise, we find out that the use of the incremental
pose estimator (employed in the occupancy anticipation model and described
in our baseline architecture) is not optimal, especially when combined with the
actuation noise typical of real-world scenarios. Luckily, we can count on more
precise and reliable information coming from the LoCoBot actuation system. By
checking the actual rotation of each wheel at every time step, the robot can update
its position step by step. We adapt the odometry sensor of the LoCoBot platform
to be compliant with our architecture. To that end, the pose returned by the sensor
is converted by resetting it with respect to its state at the beginning of the episode.
We name χ0 = (x0, y0, θ0) the coordinate triplet given by the odometry sensor at
t = 0. We then define:

A =

(
R0 t0
0 1

)
=

cos θ0 − sin θ0 x0
sin θ0 cos θ0 y0

0 0 1

 . (8.8)

Let us define xt as the augmented position vector (xt, yt, 1) containing the
agent position at each step t. We compute the relative position of the robot as:

x̃t = A−1xt, θ̃t = θt − θ0, (8.9)

where x̃t = (x̃t, ỹt, 1) contains the agent position after the conversion to episode
coordinates. The relative position and heading is given by χ̃t = (x̃t, ỹt, θ̃t). Note
that, for t = 0, χ̃0 = (x̃0, ỹ0, θ̃0) = (0, 0, 0).
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Height RGB FoV Depth FoV Depth Range Obst. Height Thresh.

Default for Simulation 1.25 H: 90, V: 90 H: 90, V: 90 [0.0, 10.0] [0.2, 1.5]
LoCoNav (ours) 0.60 H: 70, V: 90 H: 57, V: 86 [0.0, 5.00] [0.3, 0.6]

Table 8.1: List of hyperparameters changes for Sim2Real transfer.

Hyperparameters. Finally, we noticed that typical hyperparameters employed in
simulation do not match the real robot characteristics. For instance, the camera
height is set to 1.25m in previous works, but the RealSense camera on the LoCoBot
is placed only 0.6m from the floor. During the adaptation to the real-world robot,
we change some hyperparameters to align the observation characteristics of the
simulated and the real world and to match real robot constraints. These parameters
are listed in Table 8.1.

8.4 Experimental Setup
In this Section, we present our testing protocol. Experimental results obtained in a
real-world environment are then presented in Section 8.5.

Testing Setup. We run multiple episodes in the real environment, in which the
agent needs to navigate from a starting point A to a destination B. The goal is
specified by using relative coordinates (in meters) with respect to the agent’s
starting position and heading. Although the agent knows the position of its
destination, it has no prior knowledge of the surrounding environment. Because
of this, it cannot immediately plan a direct route to the goal and must check for
obstacles and walls before stepping ahead. After each run, we reset the agent
memory so that it cannot retain any information from previous episodes.

We design five different navigation episodes that take place in three different
office rooms and the corridor connecting them (Fig. 8.2a). For each episode, we
run different trials with different configurations: obstacles are added/moved, or
people are sitting/standing in the room. In total, we run 50 different experiments,
resulting in more than 10 hours of real-world testing.

Evaluation Protocol. An episode is considered successful if the agent sends a
specific stop signal within 0.2m from the goal. This threshold corresponds to the
radius of the robot base. For every navigation episode, we also track the number
of steps and the time required to reach the goal. Since the absolute number of
steps is not comparable among different episodes, we ask human users to control
the LoCoBot and complete each navigation path via a remote interface (we report
human performance in Fig 8.2b). We then normalize these measures using this
information so that results close to 1.00 indicate human-like performances. We
provide absolute and normalized length and time for each episode, as well as the
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A B

C D E

(a)

Path Length(m) Time(s) # Step

A 3.80 124 23
B 6.75 239 45
C 5.95 223 43
D 6.55 217 42
E 4.20 227 33

(b)

Figure 8.2: Layout of the navigation episodes (a). Path-specific information, as
obtained with human supervision (b).

popular SPL metric (Success rate weighted by inverse Path Length). We employ a
slightly modified version of the SPL, in which the normalization is made basing
on the number of steps and not on the effective path length to penalize purposeless
rotations. Additionally, we set a boolean flag for each episode that signals whether
the robot has bumped into an obstacle, and we report the average Bump Rate (BR).
We also report the Hard Failure Rate (HFR) as the fraction of episodes terminated
if the agent gets stuck and cannot proceed, or if the episode length exceeds the
limit of 300 steps.

8.5 Experimental Results

Real-world Navigation. In this experiment, we test our robot on five different
realistic navigation paths (Fig. 8.2a). We report the numerical results for these
experiments in Table 8.2, and we plot the main metrics in Fig. 8.3 to allow for
a better visualization of navigation results across different episodes. When a
path is contained in a single room (A), the agent achieves optimal results, as it
always stops within the success threshold from the goal. The number of steps is
slightly higher than the minimum required by the episode (33 instead of 23), but
this overhead is necessary as the agent must rotate and “look around” to build
a decent map of the surrounding before planning a route to the goal. Paths that
involve going outside the room and navigating different spaces (B, C, D, E) are
fairly complicated, but the agent can generally terminate the episode without hard
failures. When the shortest path to the goal leads to a wall or a dead-end, the
agent needs to find an alternative way to circumvent this obstacle (e.g. a door).
This leads to a higher episode length because the robot must dedicate some time
to general exploration of the surroundings. Finally, we find out that the most
challenging scenario for our LoCoNav is when reaching the goal requires to get
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Path SR ↑ SPL ↑ HFR ↓ BR ↓ Abs. Steps Norm. Steps ↑ Abs. Time Norm. Time ↑
A 1.0 0.718 0.0 0.30 32.70±1.73 0.717±0.033 176.11±10.39 0.718±0.031
B 0.8 0.711 0.10 0.22 51.67±1.72 0.880±0.027 273.70±8.24 0.879±0.030
C 0.5 0.205 0.10 0.78 123.44±10.66 0.374±0.034 631.15±50.09 0.372±0.036
D 0.5 0.318 0.10 0.89 65.67±3.90 0.645±0.037 344.00±20.08 0.657±0.038
E 0.2 0.060 0.40 1.00 135.17±29.97 0.290±0.049 722.76±162.01 0.38±0.066

Overall 0.6 0.402 0.14 0.60 - 0.608±0.036 - 0.617±0.034

Table 8.2: Navigation results. Numbers after ± denote the standard error of the
mean.

A B C D E
Episodes

0.0

0.2

0.4

0.6

0.8

1.0
SR SPL BR Norm. Steps Norm. Time

Figure 8.3: Comparison of the main navigation metrics on different episodes.

out of a room and then enter a door immediately after, on the same side of the
corridor (as in E). Since the robot sticks to the shortest path, the low parallax
prevents it from identifying the second door correctly. Even in these cases, a bit of
general exploration helps to solve the problem.

Discussion and Failure Cases. Overall, our experimental setup provides a chal-
lenging test-bed for real-world robots. We find out that failures are due to two
main issues. First, when the agent must navigate to a different room, it has no
access to a map representing the general layout of the environment. This prevents
the robot from computing a general plan to reach the long-term goal and forces it
to explore the environment before proceeding. If a map was given to the agent,
this problem would have been greatly alleviated. A second problem arises when
the goal is close in terms (x, y) coordinates but is physically placed in an adjacent
room. To solve this problem, one could decompose the navigation between rooms
in a multi-goal problem where neighboring nodes are closer. In this way, it is
possible to reduce a complex navigation episode in simpler sub-episodes (like A
or B), in which our agent has proved to be successful.
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8.6 Conclusion
We have presented LoCoNav, an out-of-the-box architecture for embodied nav-
igation in the real world. Our model takes advantage of two main elements:
state-of-art simulating platforms, together with a large number of 3D spaces, for
efficient and fast training, and a series of techniques specifically designed for real-
world deployment. Experiments are conducted in reality on challenging navigation
paths and in a realistic office-like environment. Results demonstrate the validity
of our approach and encourage further research in this direction.



Chapter 9
Conclusion

9.1 Summary of Contribution

This thesis contributes to the field of Embodied Artificial Intelligence. Embodied
AI is a novel research topic at the intersection of Computer Vision, Natural
Language Processing, and Robotics and takes advantage of recent findings on
Deep Neural Networks. Empowered by the so-called Deep Revolution, we strive
to create intelligent agents able to perceive the world, reason about spatio-temporal
relationships, and act to reach a pre-defined goal. First, we need to identify a
proper strategy to tackle such a complex topic, which entails time series and
long-term dependencies on one end and multiple input modalities on the other end.
We distinguish three problems we need to address to build an intelligent agent.
We start from the problem of long-term dependencies and sequence modeling, as
the agent needs to process data coming from a sequence of time steps acting as
previous experience. Then, we consider and tackle a first simple form of interaction
with an unknown environment: exploration. In this way, we combine visual and
spatial reasoning to perform simple actions such as in-place rotations and moving
forward. Finally, we study how to incorporate natural language instructions to
guide the agent’s navigation towards a goal. Language then becomes a natural
interface to communicate with the agent, paving the way to future research and
applications. This thesis presents a step-by-step analysis of these features that
any intelligent agent should possess. While doing so, we cover a comprehensive
overview of the field, theoretical foundations for Embodied AI, state-of-the-art
datasets and benchmarks, and practical indications regarding the deployment of
the resulting agent in the real world. Furthermore, the work presented in this
thesis allows us to answer the questions raised in Chapter 1. This step-by-step
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Chapter 8: Practical solutions for real-world deployment

Figure 9.1: Summary of the work addressed in this thesis, including the major
contributions and achievements.

methodology lets us move the first steps towards the new frontier of Embodied AI
(see Fig. 9.1) and is the main contribution of this thesis.

In Chapter 2, we propose Working Memory Connections: a new and power-
ful heuristic to improve the performance of Long Short-term Memory (LSTM).
Thanks to the newly-introduced design for the LSTM gates, the whole network be-
comes more flexible, powerful, and stable. Since long-term dependencies and time
series are constant challenges in Embodied AI, we believe that the introduction of
Working Memory Connections is a step towards intelligent collaborative robots.

In Chapter 3, we dive deep into embodiment. We introduce a simple yet
challenging task called Explore and Explain. As the name suggests, we teach
the agent to explore indoor domestic environments. We successfully achieve
exploration using Deep Reinforcement Learning and a reward function based on
artificial curiosity. At the same time, we design three different heuristic policies
to decide when the agent is facing something worth describing. This controller
activates a captioning model that produces a description of the frontal view of
the robot. Enabling the agent to recount what it sees is the first step towards
explainability and human-robot interactions in Embodied AI. Chapter 3 is also
where we first face the challenges of multimodality in this thesis. In Explore and
Explain, we choose a Divide et Impera strategy. Instead of dealing with the three
modalities altogether, we model the vision-action dependencies in the navigation
policy. Then, we connect vision and language using the captioner module. Last,
the three modalities are united thanks to the speaker policy. As we will see in
Chapters 6 and 7, a more homogeneous and unifying approach to multimodality is
also possible at the cost of higher complexity.

In Chapters 4 and 5, we mainly focus on the interaction between vision and
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actions. We devise a novel task for embodied agents in changing environments
called Spot the Difference. We draw inspiration from the fact that our homes and
workplaces often change by only details. Therefore, collaborative agents must
learn to deal with such changes in a map-and-update fashion. We create a new
dataset and a reward function to promote this behavior in neural agents. These
are the main contributions of Chapter 4. Chapter 5 concludes our exploration
of embodied exploration. We devise a hierarchical model that selects long-term
goals, maps the robot surroundings and plans short-horizon moves towards the
goal. We train this model in simulation with deep reinforcement learning using
the Habitat simulator [145] and a novel impact-based reward function. Although
the impact is a purely intrinsic reward signal, the exploration abilities of our
agent are unmatched. When testing on the most common setting for embodied
exploration, we outperform current state-of-the-art agents trained with extrinsic
rewards. Finally, we show that our modular agent can solve coordinate-based
navigation thanks to the knowledge acquired during exploration training.

With this in mind, we move towards the final Chapters of the thesis, invest-
igating the recent task of Vision-and-Language Navigation (VLN). Keeping in
mind that multimodality is the main challenge of this task, we propose two flexible
and elegant solutions to merge visual and textual perception. In Chapter 6, we
show that a limited number of dynamically-generated convolutional kernels can
ground complex concepts into the agent visual observations. Thanks to these
learned correspondences, our navigation policy can decode atomic actions in a
lower-dimensional space. In Chapter 7, we abandon Recurrent Neural Networks
and design a fully-attentive approach to VLN. The resulting architecture jointly
addresses the challenges of long-term dependencies and multimodality. Thanks
to self-attention, we can model sequences and time series more effectively. On
the other hand, cross-attention helps fuse information coming from different
modalities. In Chapters 6 and 7, we further contribute to the field of VLN by
discussing and analyzing the effects of using diverse action spaces in simulation.
Recent literature, mainly driven by numerical results, had left this investigation
unexplored. Throughout this thesis, technical contributions are supported by thor-
ough experimental analysis and quantitative results on standard benchmarks and
datasets.

9.2 Future Research
The step-by-step approach presented in this thesis aims to bridge the performance
gap between human and robotic performance on simple Embodied AI tasks.
Without any doubt, we will observe many improvements in this new and promising
field in the next few years. Here, we identify three different sources of progress
in Embodied AI. We envision future research as a three-lane road, as depicted in
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Embodied AI Now

Future Results

More powerful

architectures

Advancements

in Deep Learning

and DRL

Shared benchmarks and evaluation protocols

Progress in 

simulating

platforms

Availability of 

more 3D data

Increase in 
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and variety

Figure 9.2: We visualize future research directions for Embodied AI as a three-
lane road. To reach the long-term goal, we need progress in learning systems,
simulating platforms, and availability of data. Also, standardization is a key
element for progress shared among different paths.

Fig. 9.2. Each path brings advances independently from the others, yet research
will need improvements in all of these topics to reach the long-term goal of
intelligent collaborative agents. Let us now make these three trails for future
research more precise.

Embodied Artificial Intelligence will need more powerful and robust reasoning
systems to solve present and future tasks. Advances in Deep Learning and Deep
Reinforcement Learning will deliver new architectures and training methodologies
empowering the next generation of autonomous agents. Second, advancement in
simulating platforms reproducing our everyday world will impact Embodied AI
positively. Third, we will need more data for existing and future tasks to improve
the generalization abilities of future robots. Orthogonally, Embodied AI will
benefit from standardization and shared benchmarks and evaluation protocols to
push the research community efforts in a common direction.

In recent years, we have observed a shift from Recurrent Neural Networks
to Transformers in unimodal and Vision-and-Language tasks. Together with the
paradigm change, results have seen a substantial improvement. We foresee that
the recent novelties will empower the next generation of agents in the next future.
Although the more complex setting of Embodied AI requires more time and
experiments than unimodal tasks to benefit from recent discoveries, research will
reach that point without any doubt. With time, the abilities of personal robots
will improve thanks to future findings in Deep Learning and Deep Reinforcement
Learning in the same way as present vocal assistants have benefited from recent
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progress. Therefore, this is the primary direction for future research.
Training agents to solve complex tasks such as Vision-and-Language Nav-

igation would not have been possible without simulating platforms and ad hoc
datasets. We envision a future in which simulators are faster, more realistic, and
more flexible. Thanks to these features, we will train more agents in different
settings using the same resources we now employ for a single training stage. Fur-
thermore, realism in simulation helps deliver results in the real world. We should
not forget that the deployment in our material world is the ambitious long-term
goal of Embodied AI. When it comes to sim-to-real transfer, the degree of realism
in the sensor and actuation systems of the simulator plays a crucial role.

Concerning existing datasets for Embodied AI, we believe that the availability
of both 3D models and annotated task-related datasets play a fundamental role
in future advancement. As for now, most research employs Gibson [175] and
Matterport [31] datasets of 3D spaces. Recent results would not have been possible
without the availability of such data. Consequently, we foresee that increase in the
variety and dimension of 3D scenes will affect performance proportionally. At the
same time, the mass of annotated data for Embodied AI is minimal compared to
existing datasets for other settings. Although the investigation of self-supervised
methods and intrinsic rewards signals is also an important direction, we expect
that increasing the potential supervision will help more structured and complicated
tasks. Additionally, it will yield important insights on the effects of using strong-
supervised strategies to train embodied agents.

Apart from technological and methodological improvements, there will be
a standardization process involving Embodied AI in the next few years. More
established settings such as image captioning have already experienced this process
and got strengthened by the definition of standard metrics, training procedures,
and benchmarks. With this thesis, we follow the initial trails of this course.

9.3 General Conclusion

At the end of this thesis, we ask ourselves whether we have succeeded in answering
our primary question, i.e.

How to bridge the performance gap for simple Embodied AI tasks?

The step-by-step answers presented in the various Chapters of this thesis provide
an effective solution path. Since Embodied AI applications span a long-term
horizon, methodologies that can solve problems with long-term dependencies are
more likely to be successful. As such, mechanisms to deal with complex time
series should be integrated as soon as possible to yield appropriate time modeling
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capabilities. Such means include gated Recurrent Neural Networks and Trans-
formers. The embodied agent must combine these architectures with its sensory
suite and actuation system to deal with multimodality inside time. A modular
approach allows for a more flexible design that combines long-term planning
with local decisions in time and space. Such modularity enables downstream
tasks under appropriate circumstances. It is therefore favorable in general settings,
opposed to ad hoc applications.

As the task becomes more complex unifying approaches get more fruitful than
modular methods. Simple tools such as dynamic convolution achieve remarkable
results because they address the problem efficiently. Our finding is that simple
solutions are to prefer for complex tasks such as Vision-and-Language Navigation.
Homogeneous solutions such as the one presented in Chapter 7 are also effective.
We conclude that modular methods deal effectively with two modalities, such
as vision and actions. Instead, for three and more modalities, unifying fusion
techniques become fundamental.

However, current results should not lead us to excessive naive optimism. Our
methods achieve state-of-the-art results on Habitat and Matterport3D benchmarks
and lay the foundations for new tasks and approaches. Nevertheless, accuracy and
success rates are still far from perfect. Despite the yearly progress of Embodied
AI, the decisive spring towards closing the performance gap between humans and
robots is still to come. Furthermore, the deployment of research results in the real
world will require considerable effort. To this end, we dedicate Chapter 8 of this
thesis to outline our recent results on sim-to-real adaptation. We hope our efforts
in this direction will pave the way to future results.

To conclude, with the structured approach presented in this thesis, we have
enriched the field of Embodied Artificial Intelligence with a practical methodology
to deal with simple and complex tasks and bridge the performance gap. We are
confident that an extended exploration along the path we traced, in the form of
future research, will bring further development in Embodied AI.

Moving from place to place is supposed to be “physical”
whereas perceiving is supposed to be “mental”, but this
dichotomy is misleading. Locomotion is guided by visual
perception. Not only does it depend on perception but
perception depends on locomotion.

The Ecological Approach to Visual Perception
James J. Gibson
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Summary

Summary (English)

This thesis contributes to the field of Embodied Artificial Intelligence. Embod-
ied AI is a novel research topic at the intersection of Computer Vision, Natural
Language Processing, and Robotics and takes advantage of recent findings on Deep
Neural Networks. Empowered by the so-called ”deep revolution”, we strive to
create intelligent agents able to: perceive the world, reason about spatio-temporal
relationships, and act to reach a pre-defined goal. First, we need to identify a
proper strategy to tackle such a complex topic, which entails time series and
long-term dependencies on one end and multiple input modalities on the other
end. We distinguish three different problems we need to address to build an intelli-
gent agent. We start from the problem of long-term dependencies and sequence
modeling, as the agent needs to process data coming from a sequence of time
steps. Then, we consider and tackle a first simple form of interaction with an
unknown environment: exploration. In this way, we combine visual and spatial
reasoning to perform simple actions such as in-place rotations and moving forward.
Finally, we study how to incorporate natural language instructions to guide the
agent’s navigation towards a goal. Language then becomes a natural interface to
communicate with the agent, paving the way to future research and applications.
This thesis presents a step-by-step analysis of these features that any intelligent
agent should possess. While doing so, we cover a comprehensive overview of
the field, theoretical foundations for Embodied AI, state-of-the-art datasets and
benchmarks, and practical indications regarding the deployment of the resulting
agent in the real world.

In the first part of this thesis, we discuss Recurrent Neural Networks (RNNs).
RNNs are the most common approach when dealing with time series. IN par-
ticular, Long Short-Term Memory (LSTM) is the standard de-facto for many
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tasks involving sequential inputs and long-term dependencies. As such, they
represent an enabling technology for Embodied AI. We introduce a heuristic en-
hancement of LSTM that brings better results, increased training stability, and
reduced convergence time on a set of tasks.

In the following, we place the agent in a simulated photorealistic unknown
environment. We aim to explore the largest portion of the environment new scene
in a fixed amount of time. To that end, we propose two different training setups.
The first approach relies on curiosity, where the agent tries to maximize its surprisal
during the exploration episode. The second strategy promotes actions likely to
produce a high impact (i.e.visual changes) on the environment. We show that
exploration is an essential ability of embodied agents and that it can enable a series
of downstream tasks such as scene description and coordinate-driven navigation
in unknown environments.

Finally, we tackle the recent task of Vision-and-Language Navigation (VLN).
In VLN, the agent needs to follow a language-specified instruction to reach
a target location in a new environment. With that in mind, we propose two
different methods to fuse lingual and visual information: one based on dynamic
convolutional filters and the other based on attention. This way, we show that
it is possible to include natural language instructions from a human user in the
agent reasoning motor. Hence, we enable a series of future research directions and
applications.

As a final contribution, we discuss how to deploy agents trained in simulation
in the real world. While most of our experiments exploit simulation, we show that
it is possible to deploy the resulting models on a Low-Cost Robot (LoCoBot) with
little effort.

Sintesi (Italiano)

Questa tesi contribuisce al campo dell’Intelligenza Artificiale Incorporata (Em-
bodied AI). L’Embodied AI è una nuova area di ricerca all’intersezione tra visione
artificiale, comprensione del linguaggio naturale e robotica e sfrutta le recenti
scoperte sulle reti neurali. Il nostro obiettivo è quello di creare agenti intelligenti in
grado di: percepire il mondo, ragionare sulle relazioni spazio-temporali e agire per
raggiungere un obiettivo predefinito. Per affrontare questo problema, per prima
cosa è necessation identifichare una strategia adeguata, poiché questo argomento
complesso comporta da un lato la gestione di serie temporali con dipendenze
a lungo termine, e dall’altro la presenza di input provenienti da diversi domini.
Distinguiamo tre diversi problemi che dobbiamo affrontare per costruire un agente
intelligente. Partiamo dal problema delle dipendenze a lungo termine e che si
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incontrano quando è necessario processare lunghe sequenze temporali. L’agente,
infatti, ha bisogno di saper elaborare dati provenienti da una serie di istanti tem-
porali. Successivamente, consideriamo e affrontiamo una prima semplice forma
di interazione con l’ambiente: l’esplorazione. In questo modo combiniamo il
ragionamento visivo e spaziale per eseguire semplici azioni. Infine, studiamo
come incorporare istruzioni in linguaggio naturale per guidare la navigazione
dell’agente verso un obiettivo. Il linguaggio diventa quindi un’interfaccia naturale
per comunicare con l’agente, aprendo le porte a ricerche e applicazioni future. In
questa tesi presentiamo un’analisi di queste caratteristiche che ogni agente intelli-
gente dovrebbe possedere. Nel fare ciò, proponiamo una panoramica completa del
campo dell’Embodied AI, i suoi fondamenti teorici, i dataset e i benchmark stato
dell’arte e alcune indicazioni pratiche relative all’implementazione dell’agente
risultante nel mondo reale.

Nella prima parte di questa tesi, vengono discusse le Reti Neurali Ricorrenti
(RNN), la tecnologia più comune per modellare serie temporali, e in particolare
la Long Short-Term Memory (LSTM): lo standard di fatto per molti problemi
che coinvolgono input sequenziali e dipendenze a lungo termine. In quanto
tali, rappresentano una tecnologia abilitante per l’Embodied AI. Introduciamo
un miglioramento euristico nella LSTM che porta a risultati migliori, maggiore
stabilità durante il training e tempi di convergenza ridotti su una serie di problemi.

A seguire, collochiamo l’agente in un ambiente fotorealistico simulato. Il
nostro obiettivo è esplorare più area possibile in questo nuovo ambiente in un
intervallo di tempo prefissato. A tal fine, proponiamo due diverse configurazioni
di training: un primo approccio basato sulla curiosità, in cui l’agente cerca di
massimizzare la sua sorpresa durante l’episodio di esplorazione, e una seconda
strategia basata sull’impatto dell’azione dell’agente sull’ambiente. Mostriamo che
l’esplorazione è un’abilità essenziale per un agente e che può abilitare una serie di
capacità più specializzate come descrivere una scena o navigare verso coordinate
relative in ambienti sconosciuti.

Infine, affrontiamo il recente compito della navigazione visuale guidata da
linguaggio (VLN). In questo caso l’agente deve seguire un’istruzione testuale per
raggiungere la sua destinazione in un ambiente completamente nuovo. A questo
fine proponiamo due diversi metodi per fondere le informazioni testuali e visive:
uno basato su filtri convolutivi dinamici e l’altro basato su attenzione. In questo
modo dimostriamo che è possibile includere istruzioni in linguaggio naturale
provenienti da un utente umano nel motore di ragionamento dell’agente. Questa
possibilità apre poi le porte una serie di future direzioni di ricerca e applicazioni.

Come contributo finale, discutiamo come portare agenti addestrati alla sim-
ulazione nel mondo reale. Mentre la maggior parte dei nostri esperimenti sfrutta
la simulazione, dimostriamo che è possibile utilizzare i modelli risultanti su un
Low-Cost Robot (LoCoBot) con pochi accorgimenti.
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